
Material Definition Language
Handbook

5 May 2021

Version 1.5

WORK IN PROGRESS — http://www.mdlhandbook.com

Material Definition Language – Handbook

Text, diagrams, scene design and rendering Andy Kopra

Material design Andy Kopra, Jan Jordan

Editorial review Mike Blake, Jan Jordan, Lutz Kettner, Daniel Seibert

MDL Product Manager Jan Jordan

MDL Specification Lead Lutz Kettner

Socrates head model clay master a

Ganesha model Hane3D b

Chinese Buddha model Giimann c

Toy train model Vachagan d

Fabric model Jan Jordan

a. http://www.turbosquid.com/Search/Artists/clay-master

b. http://www.turbosquid.com/Search/Artists/Hane3D

c. http://www.turbosquid.com/Search/Artists/Giimann

d. http://www.turbosquid.com/Search/Artists/Vachagan

Copyright Information

© 2021 NVIDIA Corporation. All rights reserved.

Document build number 345460

ii MDL Handbook © 2021 NVIDIA Corporation

http://www.turbosquid.com/Search/Artists/clay-master
http://www.turbosquid.com/Search/Artists/clay-master
http://www.turbosquid.com/Search/Artists/Hane3D
http://www.turbosquid.com/Search/Artists/Hane3D
http://www.turbosquid.com/Search/Artists/Giimann
http://www.turbosquid.com/Search/Artists/Giimann
http://www.turbosquid.com/Search/Artists/Vachagan
http://www.turbosquid.com/Search/Artists/Vachagan

Contents

Preface . 1

Part 1 Language structure . 3

1 The design rationale for MDL . 5

1.1 Background: Describing appearance . 5

1.1.1 The graphics pipeline . 7

1.2 Basic principles of MDL . 8

1.2.1 Idea #1: Light is only reflected, transmitted and emitted. 9

1.2.2 Idea #2: Angles matter. 11

1.2.3 The orientation of the surface . 13

1.3 Appearance in the world . 14

1.4 The spirit of MDL . 15

2 The structure of a material . 17

2.1 Background: Form and meaning in language . 17

2.1.1 Types of data . 17

2.1.2 The value of a type . 18

2.2 The syntax of the material type . 20

2.2.1 The struct type . 20

2.2.2 Default values for fields in a struct . 21

2.2.3 Compound structs . 22

2.2.4 Accessing struct components with the dot operator . 23

2.3 Design of the MDL material . 24

2.3.1 The definition of the material struct . 25

2.3.2 Combinations of field values . 29

2.3.3 Creating a material . 30

Part 2 Light interaction . 31

3 Light at a surface . 33

3.1 The simplest material . 33

3.2 A material for diffuse reflection . 34

3.3 The material’s role in the rendering system . 37

3.4 Diffuse transmission . 38

3.5 Light emission . 40

3.5.1 Emissive objects . 40

3.5.2 Design considerations . 44

3.6 Specular interaction at a surface . 45

3.6.1 Specular reflection . 45

3.6.2 Specular transmission . 49

3.6.3 Specular reflection and transmission . 52

3.7 Glossy interaction . 52

3.7.1 Glossy reflection . 53

3.7.2 Glossy transmission . 54

© 2021 NVIDIA Corporation MDL Handbook iii

3.7.3 Glossy reflection and transmission . 55

3.8 Lighting techniques . 56

3.8.1 Geometric constructions . 56

3.8.2 A global lighting environment . 57

4 Glass . 59

4.1 Geometric structure and the appearance of glass . 59

4.2 Glossy reflection and transmission . 61

4.3 Variable transmission at edges . 62

4.4 The appearance of color through absorption . 66

4.5 Subsurface scattering as a model of glass . 69

5 Light in a volume . 73

5.1 Background: Categories of interaction in a volume . 74

5.1.1 Modeling a volume . 75

5.2 The volume distribution function . 76

5.3 Scattering and absorption . 78

5.4 Scattering direction . 79

5.5 An experimental basis for volume modeling . 80

5.6 The volume’s enclosing object . 81

5.6.1 Scattering . 81

5.6.2 Absorption . 82

5.7 Volume enclosures as scene elements . 82

5.8 Objects within a volume . 83

5.9 Light color . 85

5.10 Colored scattering . 85

5.11 Colored absorption . 86

5.12 The spread of light emission . 87

5.13 The removal of obstacles . 89

Part 3 Material combinations . 91

6 Combining distribution functions . 93

6.1 Layering functions . 93

6.2 Weighted layering . 94

6.2.1 Simplifying a material’s structure with temporary variables 98

6.2.2 Reusing parts of existing materials . 100

6.2.3 Parameterizing a layered material . 101

6.3 Layering based on the viewing angle . 104

6.3.1 Background: The refractive index . 105

6.3.2 Fresnel layering in a material . 107

6.4 Mixing functions . 110

6.4.1 The syntax of mixing functions . 110

6.4.2 Mixing glossy reflections . 112

6.4.3 An approximation of metal . 114

iv MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers . 116

6.5.1 A linear series of layered materials . 117

6.5.2 Using combined materials as layers . 122

7 Plastic . 129

7.1 Background: The Phong model . 129

7.2 The Phong model and MDL . 131

7.3 A Phong-like plastic model . 132

7.4 Layering a Phong-like plastic model . 135

7.5 Modeling the dielectric properties of plastic . 137

7.6 Modeling plastic with two glossy lobes . 138

7.7 Adding translucency to plastic . 140

8 Fabric . 145

8.1 A strategy for an MDL material . 145

8.2 Simplifying assumptions . 146

8.2.1 An isotropic cylinder appears to be anisotropic . 146

8.2.2 Multiple warp threads can create multiple highlights on the weft 147

8.3 The structural design of the fabric material . 147

8.4 The directional sheen of the warp . 148

8.5 Creating multiple highlights . 149

8.6 Combining the warp and the weft . 151

8.7 A translucency component for thinner fabric . 153

8.8 Combining iridescence and translucency . 153

Part 4 Defining functions . 157

9 Function calls as arguments . 159

9.1 The syntax of imperative MDL . 159

9.1.1 Data types and variables . 159

9.1.2 Control flow . 160

9.1.3 Standard functions and MDL modules . 162

9.1.4 User-defined functions . 163

9.2 Displaying spatial parameters as colors . 165

9.3 Mapping from spatial parameters to an image . 166

9.4 Coordinate spaces . 170

9.5 State functions and conditional expressions . 173

9.5.1 Stripes . 174

9.5.2 Checkerboards . 176

10 Noise . 179

10.1 Utility functions . 179

10.2 The noise function . 180

10.3 Combining calls of the noise function . 182

Part 5 Modifying geometry . 185

© 2021 NVIDIA Corporation MDL Handbook v

11 Geometry in a material . 187

11.1 Background: Rendering as modeling . 187

11.1.1 Historical development of the two techniques . 188

11.2 The material_geometry struct . 191

12 Displacement mapping: moving a surface point . 193

12.1 Defining displacement distance with a function . 193

12.2 Level-of-detail considerations . 198

12.3 Separating displacement from the control of light interaction 200

12.4 A parameterized displacement material . 202

12.5 Defining displacement distance with an image . 205

13 Bump mapping: perturbing a surface normal . 211

13.1 Background: Working with a local coordinate system . 211

13.2 Tiling the texture space . 213

13.3 Defining a circle within a tile . 214

13.4 Modifying the normal vector within the circle . 217

13.5 Deriving normals from a height map image . 222

13.5.1 A two-dimensional simplification of surface orientation 222

13.5.2 The normal vector of a line segment . 223

13.5.3 Constructing the normal vector . 223

13.5.4 Implementing the construction method . 226

13.6 Using normal vectors encoded in an image . 230

13.6.1 The format of a normal map . 230

13.6.2 Visualizing the vectors of the normal map . 231

13.6.3 Using the normal map . 235

13.6.4 Modifying normal map components . 238

14 Geometric profiles . 241

14.1 A framework for vector displacement . 241

14.1.1 Utility functions and their names . 241

14.1.2 A material for drawing grids . 242

14.1.3 A template material for vector displacement . 244

14.2 Maintaining a linear texture space . 246

14.3 Concavities and overhangs . 250

14.3.1 The bubble profile . 251

14.3.2 Bubble calculation . 253

14.3.3 Bubble material . 257

14.4 Displacement defined by segments . 259

14.4.1 Defining line segments . 259

14.5 Implementing a segmented profile . 261

14.5.1 Segmented profile calculations . 261

14.5.2 Segmented profile material . 265

14.5.3 Profile repetition . 266

14.5.4 Profiles as rendering resources . 267

vi MDL Handbook © 2021 NVIDIA Corporation

15 Architectural details . 269

15.1 A neoclassical handbook . 269

15.2 A grammar for ornamental form . 271

15.3 Describing piece-wise curves . 273

15.3.1 Segments . 274

15.3.2 Angle . 275

15.3.3 Sagitta . 275

15.3.4 Cyma reversa and cyma recta . 276

15.3.5 Flare . 277

15.4 Implementing curves from Palladio Londinensis . 278

15.5 Defining a piece-wise curve in MDL . 281

15.6 Using piece-wise curves in materials . 285

15.7 Radial displacment . 287

15.8 Three-dimensional texture mapping . 290

15.9 Displacement with two piece-wise curves . 292

15.10 The procedural impulse . 296

Part 6 Reference . 299

16 Terminology and syntax . 301

16.1 Inputs . 301

16.1.1 Parameters and arguments . 301

16.2 Instantiable types . 301

16.2.1 Distribution function . 301

16.2.2 Material property struct . 302

16.2.3 Material struct . 302

16.3 Modifying and combining distribution functions . 302

16.3.1 Distribution function modifiers . 302

16.3.2 Mixing distribution functions . 303

16.3.3 Components for mixing distribution functions . 303

16.3.4 Layering distribution functions . 304

16.4 Material definitions . 304

16.4.1 Creating a material definition with parameters . 304

16.4.2 Reuse of an existing material definition . 304

16.4.3 Material definition reuse with duplicated parameters 305

16.5 Material programming techniques . 305

16.5.1 Material components as arguments . 305

16.5.2 Let-expressions . 306

16.5.3 Conditional material expressions . 306

Epilog . 307

© 2021 NVIDIA Corporation MDL Handbook vii

viii MDL Handbook © 2021 NVIDIA Corporation

Preface
...the brain of the massive (about two tons) stegosaur weighed only about 70
grams, or 2.5 ounces.... By contrast, even the brain of the sheep—which is not a
particularly brilliant animal—weighs about 130 grams, greater both in absolute
size and even more so relatively to body size.... So far as strength is concerned
nothing could stop one of the great dinosaurs when it was on its way; but while
it is all very well to be able to go where you are going, the reasons for going and
what is seen and understood on the way are even more important.

Weston La Barre, The Human Animal (1954), pp.24-25. Quoted in S. I. Hayakawa, Language in
Thought and Action, 1941; fifth edition, 1991.

The Material Definition Language (MDL) specification is the primary resource for program-
mers writing an MDL compiler or integrating the use of MDL materials into an application.
For those goals, the lower-level details of the language (“What is the legal character set?”) are
critical.

For an artist creating rendered scenes, however, only one question is important: How can MDL
be used to achieve a particular look or visual effect? The language details of MDL—its syntax,
the meaning of its predefined types, how these types are combined and used by a renderer—
are only interesting as they serve the artist’s purpose.

However, both system integrators and artists will need to understand the basic principles of
MDL as an approach that differs in some fundamental ways from traditional shading lan-
guages. And though a graphical interface may assist in the creation of new materials, many
artists remain interested in the implementation details of the systems they use, aware of the
additional flexibility and creative control such lower-level understanding can provide.

The structure of the MDL Handbook is designed to address the interests of these various au-
diences. Each chapter begins with background information about principles of physics used
in that chapter as well as related issues from the history of rendering in computer graphics.
The components of MDL used to implement those principles are presented next. Examples of
MDL that implement common real-world materials (plastic, glass, fabric) follow descriptions
of MDL to demonstrate the use of MDL in a practical implementation.

Given this structure, a reader interested in an overview of the issues needed to understand
MDL could read only the “Background” sections in order. On the other hand, a reader already
familiar with MDL can look through the examples for implementation ideas, reading only
those examples she finds interesting. For a full understanding of MDL, however, the chapters
should be read in order, experimenting with the materials in the examples in each chapter
using one of the rendering systems that supports MDL.

© 2021 NVIDIA Corporation MDL Handbook 1

2 MDL Handbook © 2021 NVIDIA Corporation

Part 1 Language structure

© 2021 NVIDIA Corporation MDL Handbook 3

4 MDL Handbook © 2021 NVIDIA Corporation

1 The design rationale for MDL
This chapter provides an overview of the various goals of Material Definition Language (MDL)
as a description of the physics of light as well as a practical tool in creating images with soft-
ware.

1.1 Background: Describing appearance

The word rendering has several meanings, but they all hover around the notion of transfor-
mation. In the drawing and painting traditions of many cultures, a scene in the world is rep-
resented by the artist using line and color. From the complexity and detail of the world, the
artist’s reduced set of marks and hues can still convey an impression of the original scene. In
this sense, all representational art is actually abstract, in that it discovers the critical features of
appearance and abstracts from them the important features for the picture.

Fig. 1.1 – Young Hare

Albrecht Dürer, 1502
Fig. 1.2 – Detail from Magpies and Hare

Ts’ui Po, 1061

Rendering in three-dimensional computer graphics, however, proceeds in the opposite direc-
tion. The descriptions of the scene to be rendered consist of mathematical structures repre-
sented by programming languages. The rendering process uses these abstracted descriptions

© 2021 NVIDIA Corporation MDL Handbook 5

1 The design rationale for MDL 1.1 Background: Describing appearance

as input; the goal is a picture that creates an image true to the appearance of the world through
all the details supplied by rendering.

Fig. 1.3 – Iray Photoreal rendering of an

automobile

Thomas Zancker, Simbild

Fig. 1.4 – Iray Photoreal rendering of an automobile

Bunkspeed

The rendering process of computer graphics—from simple description to pictorial complexity—
more closely resembles architectural rendering than painting and drawing. As part of the pro-
cess of design, a rendering in architecture can serve as a visualization of the completed project,
transforming the plan, elevation, and lists of building materials into an image of the building,
seen from a particular point of view and a given time of day.

Fig. 1.5 – House by APOLLO Architects and

Associates

Jonathan Beals; Iray Photoreal rendering

Fig. 1.6 – Entrance of Hvitträsk

Eliel Saarninen; watercolor

6 MDL Handbook © 2021 NVIDIA Corporation

1.1 Background: Describing appearance 1 The design rationale for MDL

1.1.1 The graphics pipeline

The computer graphics rendering process is often compared to a pipeline, in which mathe-
matically defined shapes and descriptions of their appearance serve as inputs to the renderer,
which produces a picture as output. The set of objects to be rendered is called the scene.

render picture
ball

plastic
red

Fig. 1.7 – Object and appearance together

But rather than bundling the color “red” along with the other data that defines the ball, a
rendering process could allow color to be specified separately.

render picture

ball
plastic

red

Fig. 1.8 – Separate appearance attribute

But the color attribute is part of the description of the objects as “plastic,” so it may be more
intuitive to group “red” and “plastic” together as a unit of input for the renderer.

render picture

ball

plastic
red

Fig. 1.9 – Separate appearance

The creation of “red plastic” could also be viewed as an input/output process, where “red” is
an input to a general description of the appearance of “plastic.”

render picture

ball

plasticred

Fig. 1.10 – Attribute as appearance parameter

Now that these three components of the pipeline—the geometric object, the nature of its ap-
pearance, and the specific qualities (like color) of that appearance—have been separated, it
becomes easier to substitute other objects that can use the same description of appearance.

render picture

bicycle

plasticred

Fig. 1.11 – A different object

© 2021 NVIDIA Corporation MDL Handbook 7

1 The design rationale for MDL 1.2 Basic principles of MDL

This color attribute for the plastic appearance can also be independently changed.

render picture

bicycle

plasticblue

Fig. 1.12 – A different attribute

Furthermore, even the substance (plastic) that was being simulated can be changed indepen-
dently of the geometric object it describes.

render picture

bicycle

metalblue

Fig. 1.13 – A different substance

For a rendering system, an object like a bicycle will have some geometric definition for its sur-
face, for example, as a mesh of triangles. To describe an object’s generic appearance, the word
“material” is typically used in rendering systems, in the sense of something being composed
of a particular material or substance. The inputs to the material are similar to the parameters
of a function in a programming language.

render picture

geometry

materialparameters

Fig. 1.14 – The general categories

The goal of MDL is to provide a way of defining these materials and their parameters that the
rendering system uses to determine the appearance of an object in the resulting picture.

parameters material

render picture

geometry

MDL

Fig. 1.15 – The domain of MDL

1.2 Basic principles of MDL

A high-level programming language can describe a computational process in terms that more
closely resemble how the programmer conceptualizes the problem to be solved rather than the
actual instructions the computer executes. The important work of the programmer shifts from
describing how to implement the machinery of the solution to creating a productive conceptual
model of the problem to be solved. When the model has been designed well, problem solving
during development—as well as later extensions to the original design—are simplified by the
intuitive understanding of the problem that the model provides.

8 MDL Handbook © 2021 NVIDIA Corporation

1.2 Basic principles of MDL 1 The design rationale for MDL

In an analogous manner, MDL is designed as a high-level description of appearance. Rather than
creating a series of instructions for the rendering system to execute in order to achieve a partic-
ular visual effect, an MDL material describes the physical characteristics of the object that will
produce that effect.

To create an intuitive model of appearance, MDL relies on two common-sense ideas that de-
termine how things look.

1.2.1 Idea #1: Light is only reflected, transmitted and emitted.

If an object is visible, then some light from that object must have traveled to the observer, or,
in the case of a photograph, to the camera’s film or sensor array. What is the source of that
light? It can only have been reflected by the object, traveled through it, or been generated by
the object itself.

Reflection Transmission Emission

Figure 1.16

The terminology and structure of MDL can be understood as a series of refinements of this
small bit of informal (and obvious!) physics.

Though the word “reflection” is typically used to describe an image in a mirror, MDL uses
this word to describe any action of light that bounces off a surface. A reflection occurs at the
boundary of the object and its environment. Similarly, light passing through an object will be
affected at the boundary in a variety of ways. For example, light rays are bent, or refracted,
as they cross the boundary between air and glass. If a glass pitcher contains water, then light
passing through both the glass and the water will be bent differently at each boundary: air,
glass, water, glass, air.

© 2021 NVIDIA Corporation MDL Handbook 9

1 The design rationale for MDL 1.2 Basic principles of MDL

Reflection Refraction

Figure 1.17

Light emitted by an object is considered by MDL to be a phenomenon that occurs at the object’s
boundary.

Fig. 1.18 – Emission

However, light that passes through some substances does not pass through it in a straight line.
If a small amount of milk is added to the water, then the very small particles in the milk scatter
and absorb the light. Light is still refracted when it enters the volume of milky water, but very
quickly encounters the particles that affect it through scattering and absorption.

10 MDL Handbook © 2021 NVIDIA Corporation

1.2 Basic principles of MDL 1 The design rationale for MDL

Fig. 1.19 – Volume effects

These four types of light and object interaction—reflection, transmission, emission and volume
effects—form the basis for the software structure of MDL.

1.2.2 Idea #2: Angles matter.

In a mirror, the angle from which the light strikes the mirror (the incident angle) is the same as
the angle of reflection. In MDL, a perfectly reflective surface is called specular.

Fig. 1.20 – A perfectly specular surface

In the opposite case to specular reflection, light striking a surface that is then distributed evenly
in all directions from that surface is called perfectly diffuse.

Fig. 1.21 – A perfectly diffuse surface

In the previous diagrams, arrows were used informally only to describe direction. If the length
of an arrow also represents the amount of light leaving a point in that direction, then the dia-
gram can describe other types of reflection besides the idealized specular and diffuse.

For example, a rough surface which reflects light more in some directions than others will
create reflections that appear to be blurred. The more the light spreads after striking the surface,
the blurrier the reflection will appear to be. In MDL, this kind of reflection is called glossy.

© 2021 NVIDIA Corporation MDL Handbook 11

1 The design rationale for MDL 1.2 Basic principles of MDL

Fig. 1.22 – Surfaces of increasing roughness resulting in decreasing glossiness

Imagining all the directions in which light is reflected from a surface and the respective bright-
ness of each direction (the length of the arrow), a shape is defined that represents the distribu-
tion of light from a point, given a certain angle of the light hitting that point.

Fig. 1.23 – Examples of the distribution function

Because light reflected from a rough surface is not evenly distributed, the viewing angle will
affect how bright the surface appears to be.

Fig. 1.24 – Varying brightness based on the angle of view with a constant light angle

The way that light is reflected from a surface can be dependent upon the angle of the light that
strikes that surface, called the incident angle. For some materials, no light will be reflected in
the viewing direction for a particular range of incident angles.

Fig. 1.25 – Varying brightness based on the incident angle of light with a constant view angle

12 MDL Handbook © 2021 NVIDIA Corporation

1.2 Basic principles of MDL 1 The design rationale for MDL

Both the angle of view and the incident angle of the light affect how the light is perceived after
striking the surface. A functional relationship exists between these angles and how the light
is distributed. The mathematical definition of this relationship is called a reflectance distribution
function. These two angles also define directions—the direction from which a point is being
viewed and the direction of the incoming light. This emphasis on direction gives this function
the name used for it in the technical literature, the bi-directional reflectance distribution function,
or BRDF.

However, the behavior of light entering an object can also be described mathematically in the
same way. For example, a surface can have a “glossy” transmission that will create a blurry
image seen from the opposite side, like frosted Plexiglas. Because light is being transmitted
through the object rather than reflected from it, the corresponding distribution function defines
the effect of the viewing and incident angles on transmission. Corresponding to the BRDF, this
function is called the BTDF, the bi-directional transmission distribution function.

Fig. 1.26 – The effect of increasing surface roughness on transmission

Because of the similarity of the formal properties of the BRDF and the BTDF, MDL considers
these two functions as special cases of a function that describes the scattering of light in general.
This function is called the bi-directional scattering distribution function, or BSDF. The BSDF is the
key component of MDL that defines the boundary interactions of objects and light.

1.2.3 The orientation of the surface

In all the previous diagrams, the reflecting surface was assumed to be perfectly flat, so that
angles could be measured from the surface itself. To define angles for surfaces of any shape, a
direction that is 90◦ from the surface is used as a reference. This direction is called the normal
vector.

Fig. 1.27 – A normal vector forms a 90-degree angle to the surface

To determine the normal vector at a point on a curved surface, the tangent at that point is used
as the reference for a virtual “flat” surface at that point. The normal vector can then be used as
the frame of reference for the viewing and lighting angles at that point.

© 2021 NVIDIA Corporation MDL Handbook 13

1 The design rationale for MDL 1.3 Appearance in the world

Fig. 1.28 – The normal vector creates a frame of reference for the viewing and lighting angles

For a circle, the tangent at a point is the line that only shares that single point with the circle.
For a sphere, the tangent is similarly defined as the plane that only shares that single point
with the sphere. This idea of the tangent can be extended to any line or surface.

Fig. 1.29 – The normal vector describes the orientation of a surface at any point

For an object in the scene to be rendered using MDL’s description of its appearance, the normal
vector provides a frame of reference anywhere on the surface. The objects in the scene are
defined mathematically—for example, as a set of connected triangles—so that the rendering
system can determine the tangent and normal and provide it to the calculations of appearance
that MDL defines.

1.3 Appearance in the world

Are the two primary ideas of MDL—the four interactions of light (reflection, transmission,
emission, and volume effects) and the importance of angles—sufficient to describe the appear-
ance of objects in the real world? Combining the three surface interactions (reflection, trans-
mission and emission) and the three types of light scattering (diffuse, glossy, and specular),
produces nine possibilities. What kinds of objects in the world demonstrate these properties?

Real-world objects usually do not fall so cleanly into one of these nine categories, but often dis-
play complex combinations of elemental aspects of appearance. MDL implements such com-
binations by a software structure designed as a collection of simpler parts. These parts can be
used independently or in combination. An intuitive analysis of polished quartz as having both
a volume scattering and absorption effect as well as a surface reflection effect is implemented
in just that way. This also includes light emission as a candidate for such a combination, for
example, a flame in a glass lantern filled with smoke. A material can also be combined with
other materials to simulate blending and layering of effects. For example, a material that pro-
duces the effect of varnish could be layered over a material that simulates wood grain. As later
chapters will show, designing materials in this way also provides flexibility and allows reuse of
previously designed materials, so that the varnish material could also be used over a material
that simulates oil paint.

The physical composition of an object is not the only factor that determines its appearance.
Polishing marble produces a mirror-like finish that does not typically occur in nature, just

14 MDL Handbook © 2021 NVIDIA Corporation

1.4 The spirit of MDL 1 The design rationale for MDL

as the opacity of frosted glass is only due to the very small-scale roughness of its surface.
The geometric structure of a surface—not just the molecular constitution of the object—also
contributes to its appearance.

But very small geometric structures may be difficult to construct using triangles or other ge-
ometric primitives used in the modeling process. MDL also provides a means to modify the
normal vector to simulate a more complex surface than the underlying “real” geometric defini-
tion. In Bump mapping: perturbing a surface normal (page 211) this technique is used to create
the appearance of a finely woven surface. The geometric detail of the weave is represented by
an image that specifies how the normals should be modified, a traditional technique known as
bump mapping.

Modification of the surface structure itself can be defined by MDL through a technique called
displacement, used in “Geometric profiles” (page 241) and “Architectural details” (page 269).
Displacement adds geometric data to an object—adding triangles to a triangle mesh, for example—
rather than only modifying the description of surface orientation that the normal vector rep-
resents. These manipulations of the geometric proprieties of objects are defined in MDL in the
same way as the attributes of appearance and complement the physically based descriptions
of the distribution functions.

1.4 The spirit of MDL

Learning to create materials in MDL is primarily the process of understanding the purpose
and use of the three major categories contained within an MDL material: light interaction at a
boundary, light interaction within a boundary, and the manipulation of geometry, combined
to achieve effects that are significant in the rendering process. Reflection, transmission and
emission are furthermore defined as subcategories of surface interaction.

transmission
Reflection and

Emission

Surface

scattering
Volume

Geometric manipulation

Material

Fig. 1.30 – The main categories of an MDL material

Based on this mental model, here is the definition of an MDL material that will be explored
throughout the rest of this book:

A material is a grouping of rendering properties based on the physics of light as well as
on practical and traditional techniques that extend the power of the renderer.

The structure within which that these elemental units and their combinations are specified in
the language of MDL is the subject of the next chapter.

© 2021 NVIDIA Corporation MDL Handbook 15

1 The design rationale for MDL 1.4 The spirit of MDL

16 MDL Handbook © 2021 NVIDIA Corporation

2 The structure of a material
This chapter describes the primary syntactic structures of MDL and describes how those struc-
tures organize the physical properties of light interaction and emission.

2.1 Background: Form andmeaning in language

Linguists typically divide the investigation of language into different fields of study. A single
sentence, for example, can be analyzed in several ways—by its structure (syntax), by its mean-
ing (semantics), or by its role in a given context (pragmatics). Programming languages can also
be analyzed in this way; it’s possible to describe the structure of a program without regard to
what the program actually does. Grammatical concepts, like nouns and verbs, can also be very
useful ways to think about the components of a programming language—the data as nouns;
the actions the program performs as verbs.

But programming languages differ from natural (human) languages in two major ways. First,
programming languages are not a matter of human instinct. They are designed and created
for a purpose with particular tasks in mind—the language’s “application domain.” One of
the oldest languages still in use, COBOL, makes this clear even from its name, an acronym
for “common business-oriented language.” Two other of the oldest languages, FORTRAN and
LISP, are named in a similar manner, as contractions of “formula translation” and “list pro-
cessing.” Though natural languages also vary in their structural qualities—rhyming is eas-
ier in Italian than English; German grammar provides greater flexibility in word order than
Chinese—programming languages are consciously designed to favor particular modes of ex-
pression. Over time, both natural and programming languages evolve, but once again, this
evolution of programming languages is a matter of conscious debate and design.

Second, in natural languages, speaking and understanding speech have evolved into funda-
mental human capabilities. Writing and reading, on the other hand, are cultural artifacts that
may never develop in a given society. However, programming languages only exist in “writ-
ten” form, a “text” in the language represented as digital data that will be transformed into
“instructions” to control the operation of the computer hardware. This fundamental purpose
of a programming language—as instructions to a machine—requires precision from the user of
that language; the assumptions, interpolations and ambiguity of a natural language can only
be sources of error in software.

2.1.1 Types of data

In counting chickens or measuring teaspoons of salt, the difference between “how many” and
“how much” are matters of common sense. But “how many” can become “how much” at the
butcher shop, and a single salt crystal may be important to a chemist. In day-to-day language,
understanding is guided by context to clarify how a number is being used and to what it
refers—to length, to weight, to time.

In mathematics, the difference between types of numbers is defined in a formal way. The
phrase natural number is the formal name for the “counting numbers” from grade school. Com-
bining the natural numbers, zero and the negative of each natural number produces the inte-

© 2021 NVIDIA Corporation MDL Handbook 17

2 The structure of a material 2.1 Background: Form andmeaning in language

gers. Numbers that can be expressed as a ratio of two integers are rational; numbers that can’t
be (like π, the ratio of the circumference of a circle to its diameter) are irrational.

For many programming languages, the way different types of numbers are represented is the
basis of a system of data types. These types may be based on categories of mathematics (for
example, integers and ratios), but may also take the hardware into account, differentiating
between “integer” subtypes that can represent different ranges of the mathematically infinite
integers. Other types in a language may represent characters (letters, numbers and punctuation)
or small sets of related but unique values, like “true” and “false” that have special meaning in
the language.

These types represent a single, or atomic, value—a number, a character, a truth-value. A com-
pound type consists of a set of types, and is a natural way to represent common mathematical
ideas, like a point on a plane with an x and y coordinate, or concepts from an application do-
main, such as a color in computer graphics defined by three numeric values for its red, green,
and blue components. If a language allows a compound type to include compound types as
well as atomic types, arbitrarily complex types can be defined in a consistent manner, enabling
the language to create types that best represent the application domain.

2.1.2 The value of a type

Geometrically, a circle is defined as all the points that are the same distance from a single point.
To define a “circle” data type for a drawing program, for example, at least three numbers are
therefore required: the two geometric coordinates for the center (cx and cy) and the radius. This
compound type (of three numeric atomic types) can be represented by a table of the data type
of each component and its name:

Data type: circle

number cx

number cy

number radius

To create a “real” value—to define data that can be used as part of the computation described
by software—the components of the circle (cx, cy, and radius) are given numeric values. This
can be depicted in a similar table that specifies the name of the component and its value:

A circle instance: circle_1

cx 0

cy 0

radius 5

The creation of data of a given type is called instantiation, and the datum is called an instance
of the type. This corresponds to the common-sense use of the word “instance” to describe a
realization or example of some general idea or category—“an instance of the painter’s earlier
work.” In the previous diagram, the name of the instance of the circle type is circle_1.

Defining a data type for color is a similar process. One traditional representation of color in
computer graphics specifies the amount of the red, green and blue values. These can be the
components of the color data type:

18 MDL Handbook © 2021 NVIDIA Corporation

2.1 Background: Form andmeaning in language 2 The structure of a material

Data type: color

number red

number green

number blue

In this simple implementation of color data, the red, green and blue values vary from zero to
one, where zero represents no contribution of that component, and one represents the maxi-
mum contribution. An instance of the color type that creates a dark red color could be defined
like this:

A color instance: dark_red

red 0.5

green 0.1

blue 0.2

Both the circle and color data types are compound types consisting of three atomic values
of type number. A compound type can also contain other compound types. For example, a
drawing program could specify an individual color for each circle.

Data type: tinted_circle

number cx

number cy

number radius

color tint

The tint component of the tinted_circle type has type color. When an instance of type
tinted_circle is created, the tint component will then be an instance of type color.

A tinted_circle instance: dark_red_circle

cx 0

cy 0

radius 5

tint

A color instance

red 0.5

green 0.1

blue 0.2

To define and organize the properties of appearance, MDL uses a compound structure called
a “struct” that is similar to the examples described above. MDL structs can contain simple nu-
meric values, but also contain instances of data types that represent the distribution functions
of the previous chapter. The type of some MDL structs are themselves structs, implementing a
hierarchical organization for MDL data types.

© 2021 NVIDIA Corporation MDL Handbook 19

2 The structure of a material 2.2 The syntax of the material type

2.2 The syntax of the material type

The main categories of MDL described in the previous chapter are organized within a com-
pound type called a material. The syntax of the material type is similar in principle to the “struct”
type of several other programming languages, including C and C++. The material type, in turn,
contains other compound types, which may themselves contain compound types. For clarity,
the basic syntax of MDL will first be presented through a set of simple examples, followed by
a description of how that syntax is actually used in MDL.

2.2.1 The struct type

A struct in MDL treats a set of values as a single data type. The struct is defined by a set of
names and types for these values. As in C and many other languages, a primary numeric type
in MDL is the float (so called because the decimal point can “float” to different positions
within a sequence of digits). For a minimal definition of a circle, three values of type float

could be specified: the x and y coordinates of the center and the length of the radius. In the
following example of MDL syntax, this new struct type is named circle:

struct circle {

float cx;

float cy;

float radius;

};

An abstract representation of an MDL struct will help to describe its syntax in a general way.
In the following, italic font is used for descriptive names while fixed font is used for the parts
of the struct that remain the same for all types. Three dots (...) means that the previous line
can be repeated any number of times.

struct struct-name {

type field-name ;

...

};

To provide actual values to a struct and thereby define data for use in MDL, the constructor of
the type is executed. A constructor resembles a function call, with the type name used as the
function name, and a set of values that provides the values of the struct’s fields. If there is more
than one value, the values are separated by commas.

struct-name (field-value, ...)

The result of using a constructor is the creation of an instance of the type. For example, the
following creates a circle centered at (0,0) with a radius of five (in which 0, 0, and 5, separated
by commas, specify the values of cx, cy, and the radius, respectively):

circle(0, 0, 5)

As another example, a typical implementation of a simple color type would contain fields for
the red, green and blue components of the color:

struct color {

float red;

float green;

float blue;

};

20 MDL Handbook © 2021 NVIDIA Corporation

2.2 The syntax of the material type 2 The structure of a material

The constructor for the color type to create a dark red color instance provides a list of the red,
green and blue values for the desired color:

color(0.5, 0.1, 0.2)

In certain contexts in MDL, an instance of struct can be used as the value of a variable, a name
that can be used later to refer to that instance. The syntax of variable creation is the same as in
C and C++:

data-type variable-name = variable-value ;

For example, this statement would create a variable from the previous instance of struct color,
calling it dark_red:

color dark_red = color(0.5, 0.1, 0.2);

2.2.2 Default values for fields in a struct

For the fields of complex structs it is useful to define a default value for each field. When the con-
structor creates a new struct value, any field without an explicit value is assigned the default
value.

To define a struct with default values for its fields in MDL, a set of name/value pairs is speci-
fied. Instead of simply defining the name of a field, the name is followed by its default value,
separated with an equals sign (=):

struct struct-name {

type field-name = default-value ;

...

};

For example, this revised definition of the circle type defines default values of 0 for cx and
cy (the circle is centered at the origin) with a radius of 1.0 (a unit circle):

struct circle {

float cx = 0.0;

float cy = 0.0;

float radius = 1.0;

};

With default values for the fields, values for individual fields can be specified in the construc-
tor; the other fields in the instance are set to their default values. To specify field values, another
name/value syntax is used in which the colon character (:) separates the field name and its
value:

struct-name (field-name: field-value)

If there are multiple field values, each name/value pair is separated by a comma:

struct-name (

field-name-1: field-value-1,

field-name-2: field-value-2,

...)

© 2021 NVIDIA Corporation MDL Handbook 21

2 The structure of a material 2.2 The syntax of the material type

For example, this instance of the circle type is centered at the origin (by virtue of the default
field values for cx and cy) but has a radius of 5.0:

circle(radius: 5.0)

To explicitly specify the cx and cy values, the field values are separated by commas. Because
the field is specified by name in the constructor, the fields can be given in any order.

circle(radius: 5.0, cx: 5, cy: 15)

For these simple examples, the utility of providing default values for fields in a struct seems
limited. However, for more complex structs, default fields values can be used to define a de-
fault setting for the struct itself, so that an instance created without specifying any field values
still creates a “reasonable” instance for the intended use of that data. Looking ahead, MDL
materials make extensive use of default field values for this purpose, so that creating a ma-
terial without specifying any field values still creates an instance with intuitively reasonable
behavior during rendering.

2.2.3 Compound structs

A field in a struct may be a struct itself. For example, to create a more complex version of the
circle type in the previous section, a field could be added to specify the color of the circle. For
example, a field named tint of type color can be added to the circle type, defining a new
type that is called tinted_circle:

struct tinted_circle {

float cx = 0.0;

float cy = 0.0;

float radius = 1.0;

color tint = color(

0.5, 0.5, 0.5);

};

Notice that the default value of field tint is an instance of the color type, created by call-
ing the color constructor with values of 0.5, 0.5 and 0.5. Even in this simple example, design
considerations appear—is gray an appropriate default value for the tinted_circle type? De-
fault values for a type are typically chosen with the intended use of the type in an application
domain, as will be evident in the more complex types of MDL.

Creating an instance of tinted_circle is the same in principle as the simpler circle type. For
example, to create a unit circle that is centered at the origin the default field values are suffi-
cient, so that creating a red circle with those properties only requires specifying a value for the
tint field:

tinted_circle(tint: color(1, 0, 0))

Specifying values for all fields does not require that the names be used; the values are associ-
ated with the fields by position. The color constructor is used for the fourth value to create the
correct type for the tint field.

tinted_circle(2, 4, 10, color(0.5, 0.1, 0.2));

As the definitions of structs grow in size and complexity (with nested structs), it can be use-
ful to use field names and multiline layout with meaningful indentation to help clarify the
contents of the struct:

22 MDL Handbook © 2021 NVIDIA Corporation

2.2 The syntax of the material type 2 The structure of a material

tinted_circle (cx: 2,

cy: 4,

radius: 5,

tint: color(red: 0.5,

green: 0.1,

blue: 0.2));

As in many programming languages, the way that code is formatted on the page can be a
source of (surprisingly) intense debate. (Spaces before parentheses? After?) Because multiple
space characters are ignored in MDL, the definition of the material type can be formatted in
a manner that can clarify the type, name, and default value for each field. As an example, the
following format for the previous struct instance will appear clearer to some:

tinted_circle (

cx: 2,

cy: 4,

radius: 5,

tint: color (

red: 0.5,

green: 0.1,

blue: 0.2));

2.2.4 Accessing struct components with the dot operator

It is sometimes useful to be able to refer to a field value within a struct instance, rather than
the entire instance itself. MDL provides the dot operator to extract field values from a struct.

The syntax of the dot operator is familiar from many traditional programming languages: the
struct values is followed by a dot (.), followed by the name of the field to be accessed.

For example, given the previous example of the circle struct with default field values, an
instance of a circle could be used to initialize a variable, named here upper_circle:

circle upper_circle = circle(0.0, 5.0, 1.0);

The field values of upper_circle can be extracted and assigned to variables of the appropriate
type, in this case, type float:

float center_y = upper_circle.x;

float center_x = upper_circle.y;

float radius = upper_circle.radius;

If a field value that is acquired through the dot operator is itself a struct, then the dot operator
could be used again on that value, resulting in a series of field references.

For example, if the variable dark_red_circle is declared as an instance of tinted_circle:

tinted_circle dark_red_circle = tinted_circle(2, 4, 10, color(0.5, 0.1, 0.2));

then the red value of dark_red_circle could be extracted and saved to a variable of type
float named red_component using the dot operator twice:

float red_component = dark_red_circle.tint.red;

The dot operator becomes most useful in MDL for extracting parts of existing materials to
reuse them in building new materials in a manageable way.

© 2021 NVIDIA Corporation MDL Handbook 23

2 The structure of a material 2.3 Design of the MDLmaterial

2.3 Design of the MDLmaterial

Given MDL’s syntax for nested data structures using the struct type, how can the observations
of light’s behavior in the first chapter be encoded in MDL? The first requirement is that the
definition of a material represent all three possibilities of light reaching the eye from an object’s
surface: reflection, transmission, and emission:

• Material
• Reflection properties
• Transmission properties
• Emission properties

MDL defines these three basic properties as interactions of light at the surface of an object, so
they are combined under a single category:

• Material
• Surface properties

• Reflection
• Transmission
• Emission

As described in the first chapter, light entering an object may not take a straight and unob-
structed path through it. Volume effects are therefore another important component of the
material:

• Material
• Surface properties

• Reflection
• Transmission
• Emission

• Volume properties

This hierarchical structure forms the physics-based component of an MDL material. But a
material is used to describe how a surface should be rendered in a computer program. The
“surface” to be rendered is a mathematical description; traditional rendering techniques have
included—for efficiency in both specification and computation—geometric manipulations in
the rendering phase. To support these techniques, the MDL material adds another component
for geometric properties.

• Material
• Surface properties

• Reflection
• Transmission
• Emission

• Volume properties
• Geometric properties

Further practical concerns include how the “back” side of a surface should be rendered (“back-
facing”). The basic surface properties are duplicated for the back surface.

24 MDL Handbook © 2021 NVIDIA Corporation

2.3 Design of the MDLmaterial 2 The structure of a material

• Material
• Surface properties of front-facing surfaces

• Reflection
• Transmission
• Emission

• Surface properties of back-facing surfaces
• Reflection
• Transmission
• Emission

• Volume properties
• Geometric properties

Two other properties define behavior for the entire material: a value for the index of refraction
for light transmission through a surface, and how a surface should be interpreted with respect
to volumes. Adding fields for these properties completes a schematic view of MDL’s definition
of a material:

• Material
• Surface properties of front-facing surfaces

• Reflection
• Transmission
• Emission

• Surface properties of back-facing surfaces
• Reflection
• Transmission
• Emission

• Volume properties
• Geometric properties
• Shared properties

• Index of refraction
• Surface treated as boundary or volume

These final additions to the outline of an MDL material complement the physics-based de-
scriptions of the first chapter with techniques that extend the power of a material to describe a
wider range of appearance characteristics. Simple MDL materials only use a few fields of the
struct, so that a full understanding of all material fields is not required until the effect of that
field becomes relevant in the rendering.

Fields not specified in a material definition default to values which typically signify that the
property the field represents does not contribute to the rendered effect. So, for example, a sur-
face that exclusively reflects light only specifies a reflection property; a surface that exclusively
emits light only specifies an emission property. However, the MDL structure as a whole repre-
sents all possible ways that light could be seen on a surface, allowing the definition of complex
combined effects such as a shiny crystal ball filled with glowing smoke, or, more practically, a
fluorescent tube that both reflects and emits light.

2.3.1 The definition of the material struct

The previous section described the set of properties that define appearance in MDL. How is
this set implemented in MDL syntax? The MDL material struct contains six fields that define
these properties as data types in MDL. These fields contain instances of the distribution func-
tions (BSDFs, EDFs, VDFs) as well as other parameters.

© 2021 NVIDIA Corporation MDL Handbook 25

2 The structure of a material 2.3 Design of the MDLmaterial

Field name Description Data type

thin_walled Distinguishes between boundaries and two-sided objects bool

surface Defines interactions of light and surface material_surface

backface Defines interactions of light with the “back” of a surface material_surface

ior Defines the index of refraction for refracting objects color

volume Defines interaction of light in a volume material_volume

geometry Defines render-time geometric modifications material_geometry

The six fields of the material struct

These six fields are defined in the material struct using the syntax described above in Section
2.2.3 on page 22). Each field in the material struct specifies a default value for the field, and so
consists of three parts: the data type of the field, the field name, and the default value of the field
that follows an equals sign (=).

Listing 2.1

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

uniform color ior = color(1.0);

material_volume volume = material_volume();

material_geometry geometry = material_geometry();

};

The following is a brief overview of the material struct’s fields and their data types; later chap-
ters go into greater depth on how the field values affect the resulting appearance of a material.

thin_walled

In MDL, the distinction between a boundary and a two-sided object is specified by the
first field of the material struct, thin_walled. The thin_walled field has a type of bool

(for “Boolean”), which can have a value of true or false. The thin-wall property can-
not vary for the surface for which material is defined, so the type modifier uniform

precedes the bool type name. The default value of thin_walled is false, meaning that
the surface associated with the material represents a volume boundary. If the value of
thin_walled is true, then the surface is an object without thickness—a membrane that
is infinitely thin.

surface

The surface field defines the appearance property for both boundary and thin-walled
surfaces. The type of the surface field is the material_surface struct (described in the
next chapter).

26 MDL Handbook © 2021 NVIDIA Corporation

2.3 Design of the MDLmaterial 2 The structure of a material

Listing 2.2

struct material_surface {

bsdf scattering = bsdf(); Bidirectional scattering distribution function

material_emission emission = material_emission();

};

Note that the material_surface struct is a compound struct: the second field of material_

surface is itself a struct of type material_emission that defines light emission:

Listing 2.3

struct material_emission {

edf emission = edf(); Light emission distribution function

color intensity = color(0.0);

intensity_mode mode = intensity_radiant_exitance;

};

For MDL, reflection, transmission and emission are all considered to be interactions
of light and a surface, and are therefore all specified within the compound material_

surface struct.

backface

Both boundary and thin-walled surfaces use the surface field for their appearance
definition. The two sides of the thin-walled surface can be separately specified using
the third field of the material struct, backface. Like surface, the backface field is of
type material_surface. By default, both sides of a thin-walled surface use the value of
surface; only by also specifying backface can the two sides have separate appearance
properties. To have an effect in the appearance of an object, the backface field requires
that the value of thin_walled is set to true.

ior

The ior field defines the index of refraction when the surface is treated as a boundary.
To have an effect, the ior field requires that the value of the thin_walled field is false.
The type of ior is color, providing for frequency dependent refraction effects. The value
of ior cannot vary across a surface, so the type is also designated as uniform. The ior

property uses the MDL “color” type that is more complex than in the example in section
2.1.2.

volume

The fifth field, volume, is a struct of type material_volume, and defines how light is
absorbed and scattered in a volume. Because it treats the surface as a boundary of the
volume into which light is passing, the value of thin_walled must be false for this
field to have an effect.

© 2021 NVIDIA Corporation MDL Handbook 27

2 The structure of a material 2.3 Design of the MDLmaterial

Listing 2.4

struct material_volume {

vdf scattering = vdf(); Volume distribution function

color absorption_coefficient = color();

color scattering_coefficient = color();

};

geometry

The final field of the material struct, geometry, is a struct of type material_geometry,
and is MDL’s implementation of traditional modeling techniques that can be part of the
rendering process. (Geometric manipulations using the material_geometry type are
described in Part 5 (page 185).)

Listing 2.5

struct material_geometry {

float3 displacement = float3(0.0); Modification of the surface geometry

float cutout_opacity = 1.0; Modification of the surface opacity

float3 normal = state::normal(); Modification of the surface orientation

};

The default values of the property types in the material struct (for surface, backface, volume,
and geometry) do not specify argument values for their constructors (the parenthesized list of
field values is empty). The default values for the material properties have the following effect
on the appearance the material will produce:

Material property Effect of its default value

material_surface No reflection or transmission of light

material_emission No emission of light

material_volume No absorption or scattering of light in the volume

material_geometry No manipulation of the surface

Visual effect of the default values of the material properties

Note that these default values implement the idea of “doing nothing” for each category. This
implies that creating materials that implement different types of appearance is accomplished
by enabling the appropriate properties of the relevant fields. In other words, more complex
effects are created by enabling more components of the material struct, for example, a material
that defines both reflective and emissive properties.

28 MDL Handbook © 2021 NVIDIA Corporation

2.3 Design of the MDLmaterial 2 The structure of a material

2.3.2 Combinations of field values

Not all combinations of field values are viable in the material struct. For example, when the
value of thin_walled is true, the value of the volume field is ignored. On the other hand, the
backface field is used when thin_walled is set to true. Three main categories are possible
based on the settings of thin_walled and backface:

Value of thin_walled Status of backface Effect

false Field not set The surface is a boundary

true Field not set The surface is a two-sided object; surface

field used by both sides

true Field set The surface is a two-sided object; the value of
the surface field is used for one side, the
value of backface for the other

Effect of the values of thin_walled and backface

The following diagram shows all the fields that can be set for the three main categories derived
from the settings of thin_walled and backface.

volume

and

ior

surface

and

geometry

thin_walled : false

of a volume
A surface is the boundary

surface

and

geometry

surface

and

geometry

thin_walled : true

surface

and

geometry

backface

and

geometry

thin_walled : true

an infinitely thin volume
A surface is double-sided, enclosing

Fig. 2.1 – Permutations of the fields of the material struct

© 2021 NVIDIA Corporation MDL Handbook 29

2 The structure of a material 2.3 Design of the MDLmaterial

2.3.3 Creating a material

The material struct of Section 2.3.1 (page 25) defines the abstract properties used by MDL to
specify appearance. When an an object is rendered using an MDL material, these abstract prop-
erties must be made concrete by providing actual attributes for them, for example, specifying
a particular hue of red for the abstract type “color.” The material struct can be thought of as a
container that organizes these values.

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled

material (

thin_walled : boolean-value,
surface : material-surface-instance,
backface : material-surface-instance,
ior : color-instance,
volume : material-volume-instance,
geometry : material-geometry-instance

)

The next chapter uses this container of attributes to define the properties of the fundamental
behavior of light described by MDL—the interaction of light with a surface.

30 MDL Handbook © 2021 NVIDIA Corporation

Part 2 Light interaction

© 2021 NVIDIA Corporation MDL Handbook 31

32 MDL Handbook © 2021 NVIDIA Corporation

3 Light at a surface
Now that the previous chapter has presented the syntactic structures of MDL, this chapter can
describe the use of MDL materials in the production of imagery by a rendering system. Each
end-user rendering application will tailor the presentation of materials to suit the requirements
of its interface, though the materials used during the rendering process will all be based on the
structural principles described here.

The materials that are presented throughout this handbook can be used in any application that
supports MDL and allows the installation of custom materials.

3.1 The simplest material

As section 2.2.1 described, creating an instance of an MDL material struct syntactically re-
sembles a function call in a typical programming language. If no arguments are provided for
the fields of the struct, the default values are used instead. The simplest possible instance of a
material struct defines no arguments—the argument list is empty:

material()

Without arguments, the default values for an instance of the material struct (described in
section 2.3.1) create a material that does not reflect, transmit, emit, absorb or disperse light.
This is hardly a useful material, but can serve as a starting point for a description of MDL
syntax.

To use a material instance in a rendering system, a name and a list of zero or more parameters
are associated with the instance with the equals sign character (=). This association creates a
material definition.

For example, the following MDL statement creates a material definition named "nil" with no
parameters. It uses the default material instance (containing no arguments) described above.

material nil() = material();

In the terminology of functions in languages like C and C++, the previous statement both
declares and defines the nil material definition.

declaration = definition ;

Typically, however, a material definition is made more complex than this trivial example in
two ways:

1. Useful material instances specify argument values.

2. Reusable material definitions provide parameters used by those arguments.

A complete syntax description of a material definition includes those features:

material name(material-parameters) = material(material-arguments);

© 2021 NVIDIA Corporation MDL Handbook 33

3 Light at a surface 3.2 A material for diffuse reflection

In a manner that is typical for most programming languages, whitespace in MDL (spaces, tabs,
newlines) are not significant except as separators between words. MDL code can be divided
into separate lines to help convey it structure. Materials developed in the following sections
will follow this basic structure:

material name (

material-parameters)

= material (

material-arguments);

The next section describes the arguments of a material instance: the hierarchical structure of
material properties and distribution functions.

3.2 A material for diffuse reflection

A rendering system based on a chain of traditional rendering plug-ins that manipulate the ren-
dering process ("shaders") can be presented in a linear way. For example, the simplest shader
may simply provide a constant color to use for an object’s surface and will serve as a good in-
troduction to shader programming. But even a simple MDL material is a compound structure,
consisting of one or more material properties, which in turn contain one or more distribution
functions.

distribution functions

material properties

material instance

Fig. 3.1 – A model of the nesting of data in an MDL material

Materials can also serve as building blocks to create compound materials, another aspect of hi-
erarchical organization in MDL. The next chapter will describe how these elemental materials
can be combined using mixing and layering processes to an arbitrarily complex degree.

This section develops the simplest useful material by describing its hierarchical structure from
the top down, from the material definition to the distribution function at its heart. The material
reflects light uniformly in all directions, simulating diffuse reflection, but does not transmit or
emit light. This behavior is a rough simulation of the reflective properties of plaster, so the
material definition will be named "plaster".

material plaster ()

= material (

material-arguments);

Note that the material has no parameters, so an empty parameter list follows the name plaster.

34 MDL Handbook © 2021 NVIDIA Corporation

3.2 A material for diffuse reflection 3 Light at a surface

Out of the six fields of the material struct, the plaster material only needs to specify a value
for the surface field:

material plaster ()

= material (

surface: surface-property);

The surface property for the surface field is material_surface (described in section 2.3.1):

material plaster ()

= material (

surface: material_surface (

material-surface-arguments));

The material_surface struct contains two field values, scattering and emission. For the
plaster material, a value will be specified for just the scattering field:

material plaster ()

= material (

surface: material_surface (

scattering: bsdf-instance));

The surface, volume and emission material properties contain instances of distribution func-
tions. For plaster, the material_surface property will use an instance of diffuse_reflection_

bsdf. The distribution functions are components of the standard df MDL module, so the mod-
ule name precedes the BSDF, separated by two colons (::).

material plaster ()

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

bsdf-arguments)));

Distribution function df::diffuse_reflection_bsdf has two arguments that control the color
and roughness of the surface, named tint and roughness. For the plaster material, a color

value of 70% gray will be specified for the tint argument. By not specifying the roughness

argument, the default value of zero will be used.

material plaster ()

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: color(0.7))));

© 2021 NVIDIA Corporation MDL Handbook 35

3 Light at a surface 3.2 A material for diffuse reflection

Rendering two objects using this material produces the Figure 3.2:

Fig. 3.2 – The appearance of diffuse reflection produced by the plaster material

For the plaster material, only one field value of the material struct was specified, surface.
For the material_surface property it contains, only one field value was specified, scattering.
Materials can be characterized by the subset of field values that they specify, based on the dia-
gram at the end of the last chapter.

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled

material plaster ()
= material (

surface:

material_surface (
The value of the “surface” field is a
“material_surface” instance

scattering:

df::diffuse_reflection_bsdf (

tint: color(0.7))));

The value of the “scattering”
field is a BSDF

36 MDL Handbook © 2021 NVIDIA Corporation

3.3 Thematerial’s role in the rendering system 3 Light at a surface

3.3 Thematerial’s role in the rendering system

What does "using a material" mean in a rendering system? The material definition describes
a collection of material properties and distribution functions. In a scene to be rendered, a ma-
terial definition is associated with an object through some specification by the user of the ren-
dering system, for example, through a mouse gesture in a graphical interface or through the
syntax of a text-based description of the scene. An instance of the material definition is created
for this association with an object. Note, however, that the plaster material definition has
no parameters—every instance of plaster will behave in the same way. That is, given this
definition of plaster:

material plaster ()

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: color(0.7))));

...only one kind of instance can be created:

plaster()

In other words, all instances of plaster will produce the same type of appearance.

It would be better to have a more flexible version of the plaster material definition, for exam-
ple, one in which the color can be specified by the user in the interface to the rendering system.
Any material definition can be generalized by transforming constant values in the material
instance into parameters of the material definition. Constant values in the material instance
become references to the parameters declared by the material in its parameter list:

material plaster (

parameter-declarations)

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

parameter-references)));

For the current version of plaster, this means making the tint value of the scattering BSDF
into a parameter of the material definition:

Listing 3.1

material plaster (

color tint = color(0.7)) Tint values exposed as a parameter

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint))); Using the “tint” parameter

By giving the parameter named tint a default value of color(0.7), a plaster instance with-
out a tint value will produce the same effect as before. However, an instance can specify a
tint value to produce plaster instances of any color. For example, this instance would pro-
duce diffuse reflections of dark red:

© 2021 NVIDIA Corporation MDL Handbook 37

3 Light at a surface 3.4 Diffuse transmission

plaster(tint: color(0.3, 0.1, 0.1))

Materials are often developed incrementally in this way—converting constant values in the
material instance into references to parameters of the material definition when it becomes
clear that increased flexibility in the use of the material is desirable. For example, the BSDF
diffuse_reflection_bsdf also has a roughness parameter (a coefficient of the Oren-Nayar
model on which the BSDF is based). By not including an explicit value for roughness in the
BSDF instance, the roughness default value of 0.0 is used during rendering. The roughness

parameter can be exposed in the material definition interface in the same way as the tint pa-
rameter:

Listing 3.2

material plaster (

color tint = color(0.7),

float roughness = 0.0) Degree of roughness as a parameter

= material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint,

roughness: roughness))); Roughness passed to the BSDF

By specifying the same default value of 0.0 for roughness in the plaster parameters as
roughness has in diffuse_reflection_bsdf, the new plaster definition has the same be-
havior as it did before the addition of the roughness parameter. This careful parameterization
allows new capabilities for a material even as existing scenes that use the material will continue
to render as before.

3.4 Diffuse transmission

The surface distribution functions can control transmission through a surface as well as reflec-
tion from it. By replacing the diffuse_reflection_bsdf in the plaster material definition
with diffuse_transmission_bsdf, light travels through an object, but is scattered uniformly
when it strikes the surface.

Listing 3.3

material diffuse_transmission ()

= material (

surface: material_surface (

scattering: df::diffuse_transmission_bsdf (

tint: color(1.0))));
Diffuse transmission

Replacing the plaster instances for the two objects with instances of diffuse_transmission

produces Figure 3.3 (page 36):

38 MDL Handbook © 2021 NVIDIA Corporation

3.4 Diffuse transmission 3 Light at a surface

Fig. 3.3 – Diffuse transmission

This material is an idealization of diffuse transmission and isn’t physically plausible; an object
in nature would also reflect some light as well as transmit it. But a better known use of diffuse
transmission can be produced by using the diffuse_transmission material with a thin, flat
object.

Fig. 3.4 – Diffuse transmission through a thin object

Figure 3.5 (page 40) looks more like frosted glass or plexiglass; the missing diffuse reflections
are hardly obvious and may be an acceptable approximation for this particular effect. The
diffuse_reflection material can also show shadows cast on it in a convincing manner.

© 2021 NVIDIA Corporation MDL Handbook 39

3 Light at a surface 3.5 Light emission

Fig. 3.5 – Shadows visible from diffuse transmission through a thin object

A very simple material like diffuse_transmission, though not complete in its handling of
light interaction, may still be a useful rendering effect in the early phases of design work. Later,
when greater accuracy in simulating the final look of a design, materials that better emulate
the appearance real world substances could replace this early approximation, used in the same
spirit as an artist’s sketch.

3.5 Light emission

The discussion of the previous examples of diffuse reflection and transmission ignored a rather
important component of the image—the source of light. This is a problem with any presenta-
tion of a language like MDL; without light objects cannot be seen, but without objects, light
will never be reflected or transmitted to our eyes (or camera). Given the previous description
of diffuse reflection and transmission, this section will now fill in the missing piece of the puz-
zle: the source of illumination in MDL.

3.5.1 Emissive objects

MDL defines light emission as a property of a surface, like reflection and transmission. The
material_surface property contains two fields to implement this, scattering and emission:

struct material_surface {

bsdf scattering = bsdf();

material_emission emission = material_emission();

};

The scattering field is a BSDF, but the emission field is defined as another compound type,
the material_emission struct:

struct material_emission {

edf emission = edf();

color intensity = color(0.0);

intensity_mode mode = intensity_radiant_exitance;

}

40 MDL Handbook © 2021 NVIDIA Corporation

3.5 Light emission 3 Light at a surface

The emission distribution function, or EDF, in the material_emission struct is implemented
by type edf. For the examples of the next several chapters, the light-emitting objects will use
diffuse_edf, which emits light uniformly in all directions.

The simplest emissive material definition only defines a value for the emission field of the
surface field of the material struct. This example also provides control of the light intensity
through the parameterization of the value of the material_emission’s intensity field (the
parameter tint).

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled

material emission (
color tint = color(1.0))

= material (

surface: material_surface (

emission: material_emission (

emission: df::diffuse_edf(),

intensity: tint)));

Light emission from front
surface

Rendering the objects of the previous scene with ten rectangular polygons that use the emission

material produces Figure 3.6:

© 2021 NVIDIA Corporation MDL Handbook 41

3 Light at a surface 3.5 Light emission

Fig. 3.6 – Emission from the front side of the polygon, no material assigned to the back

The backface field of the emission material is not defined, so the single polygons only emit
light from their "front" side (defined by a geometric convention of the renderer). Defining a
diffuse reflection BSDF for the backface field and setting thin_walled to true defines two
different materials for the two sides of the polygon.

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled
material emission_with_diffuse_backface (

color tint = color(1),
color backtint = color(0.8, 0.78, 0.75))

= material (
thin_walled: true,

surface:

material_surface (

emission: material_emission (

emission: df::diffuse_edf(),

intensity: tint)),

Light emission from front surface

backface:

material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: backtint)));

Diffuse reflection from back
surface

The color used for diffuse reflection in the backface field is set by default to be the same color
for the diffuse reflection of the floor, so that they seem to be made of the same type of real-
world material.

42 MDL Handbook © 2021 NVIDIA Corporation

3.5 Light emission 3 Light at a surface

Fig. 3.7 – Emission from the front side of the polygon, diffuse reflection from the back

This material, emission_with_diffuse_backface, was used to provide illumination for the
examples of diffuse reflection and transmission in the beginning of this chapter. A wider an-
gle of view that used in those images shows the structure of the lighting environment that
produced them.

Fig. 3.8 – Lighting environment of the images of the previous section

Like lighting design for photography, the emissive objects in the upper corners are not po-
sitioned to be seen in Figure 3.8, but for the lighting effect their shape and placement will
provide.

© 2021 NVIDIA Corporation MDL Handbook 43

3 Light at a surface 3.5 Light emission

3.5.2 Design considerations

The emissive rectangles used in lighting the pictures at the beginning of this chapter were
structured in the scene setup to be easily rotated around their lengthwise axis. By rotating
them so that they point straight down, the ceiling is not longer illuminated, and the upper
parts of the two objects are no longer lit as well.

Fig. 3.9 – Emissive objects rotated to point down

Rotating the emissive rectangles so that they point straight up, all light in the scene now comes
from diffuse reflection from the ceiling.

Fig. 3.10 – Emissive objects rotated to point up

Changing only two parameters of the geometric structure of the scene—the rotation of the
emissive rectangles—different lighting moods can be created. With the physically plausible
simulation of lighting effects provided by MDL, lighting scene design can more close resemble

44 MDL Handbook © 2021 NVIDIA Corporation

3.6 Specular interaction at a surface 3 Light at a surface

the traditional lighting techniques of photography and cinematography. Technical advances
in physical simulation ironically allow the pre-computerized design of traditional Hollywood
lighting to once again be a source of artistic inspiration.

3.6 Specular interaction at a surface

As described in “Idea #2: Angles matter (page 11),” the specular reflection of light from a surface
in MDL describes the reflection from a perfect mirror. Specular reflection, in this sense, is a
mathematical idealization, like perfectly uniform (diffuse) reflection. Like diffuse interaction,
specular interaction is extended to include "mirror-like" transmission at a surface—light is
refracted at the surface based on the index of refraction defined by the material.

For diffuse reflection and transmission, MDL provides two distribution functions, df::diffuse_

reflection_bsdf and df::diffuse_transmission_bsdf. However, in specular interaction at
a surface, there is a single distribution function, df::specular_bsdf.

Listing 3.4

bsdf df::specular_bsdf (

color tint = color(1.0),

uniform scatter_mode mode = df::scatter_reflect Scattering mode defined by
an enum

);

The mode field of specular_bsdf controls whether light is reflected, transmitted, or both. To
implement a set of choices for use as argument values in constructors and functions, MDL
provides an enumerated type, defined by the keyword enum. The enumerated type used by
specular_bsdf to control reflection and transmission is called scatter_mode. The definition
of an enum in MDL contains a list of the possible values that a value of that enum type can have.

enum scatter_mode {

scatter_reflect,

scatter_transmit,

scatter_reflect_transmit

};

All of the remaining materials described in this chapter will use scatter_mode to choose be-
tween reflection, transmission, or a combination of the two.

3.6.1 Specular reflection

Pure specular reflection—a perfect mirror surface—is the default value of the df::specular_

bsdf function. The simplest material that implements a mirror does not specify any argments
for the BSDF:

© 2021 NVIDIA Corporation MDL Handbook 45

3 Light at a surface 3.6 Specular interaction at a surface

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled

material specular()
= material(

surface: material_surface(
scattering:

df::specular_bsdf())); Default specular reflection

The default tint value for df::specular_bsdf is color(1.0)—in other words, all light is
reflected by the surface. Such a perfect reflector is impossible in nature. To define a material
that reflects 50% of the incoming light, a tint value of color(0.5) is used:

Listing 3.5

material mirror()

= material(

surface: material_surface(

scattering: df::specular_bsdf(

tint: color(0.5), Color value to simulate 50% reflection

mode: df::scatter_reflect)));

In the mirror material, the mode argument for df::specular_bsdf is also specified so that this
material can serve as the pattern for the other types of specular interaction.

Using the mirror material to render the scene from the diffuse reflection examples creates
Figure 3.11:

46 MDL Handbook © 2021 NVIDIA Corporation

3.6 Specular interaction at a surface 3 Light at a surface

Fig. 3.11 – Pure specular reflection

Notice the hard edges of the reflections. Pulling the camera back shows the lighting environ-
ment of Figure 3.11 (page 46):

Fig. 3.12 – Lighting environment of Figure 3.12

Changing the lighting environment Figure 3.12 only by rotating the light-emissive polygons
creates smoother lighting transitions for some of the reflections in Figure 3.13 (page 48):

© 2021 NVIDIA Corporation MDL Handbook 47

3 Light at a surface 3.6 Specular interaction at a surface

Fig. 3.13 – Effect of different lighting environment on the specular surfaces

Figure 3.14 is a close-up view of Figure 3.13:

Fig. 3.14 – Close-up of Figure 3.14

Subjectively, Figure 3.14 may appear to better represent a mirror-like surface than the previous
close-up image, Figure 3.13. Why? Typical photographs of highly polished metallic surfaces
(jewelry in a catalog, for example) are shot in a conventional "table-top" style, with diffuse
reflective surfaces and stragetically placed spotlights. Perhaps the combination of hard and
soft transitions in the reflections is more like typical photographs of metallic surfaces.

Creating a circular arrangement of small polygons, each with an emissive surface pointed
twoard the ceiling, produces a diffuse lighting environment without the hard lighting tran-
sitions of the previous images.

48 MDL Handbook © 2021 NVIDIA Corporation

3.6 Specular interaction at a surface 3 Light at a surface

Fig. 3.15 – Small emissive surfaces pointing toward the ceiling to light specular surfaces by diffuse reflection

Fig. 3.16 – Close-up of Figure 3.16

An important quality of the surface—its apparent roughness—has been increased only by chang-
ing the lighting environment. The strong influence of the lighting environment on the interpreta-
tion of the physical nature of a surface has significant implications for materials intended for
design visualization and the user interface in which they are presented.

3.6.2 Specular transmission

Like specular reflection, specular transmission at a surface is defined by df::specular_bsdf

but with df::scatter_mode as the value for the mode field. However, by specifying a value
greater than 1.0 for the material’s index of refraction (field ior), the direction of light is modified
at the surface boundary, or refracted.

© 2021 NVIDIA Corporation MDL Handbook 49

3 Light at a surface 3.6 Specular interaction at a surface

scattering

emission

surface

scattering

emission

backface

ior

scattering

volume

geometry

material

thin_walled

material specular_transmission (
color tint = color(1))

= material (

ior: color(1.3), Index of refraction

surface: material_surface (
scattering: df::specular_bsdf (

tint: tint,

mode: df::scatter_transmit))); Transmission mode

In material specular_transmission, the tint argument to df::specular_bsdf is exposed as
a parameter to the material. By default, the color of the light that passes through the object is
not modified, only the light’s direction through refraction.

Fig. 3.17 – Specular transmission without color modification of the light

However, by specifying a value less than 1.0 for the color components of the tint, the light
is reduced by that factor at each surface interaction. Multiple surface interaction occur when
light enters and leaves the object, but also due to multiple interactions within the object due to
internal reflection.

50 MDL Handbook © 2021 NVIDIA Corporation

3.6 Specular interaction at a surface 3 Light at a surface

Fig. 3.18 – Specular transmission with a tint of color(0.75)

In Figure 3.18, the same value was used for the red, green and blue components of the tint pa-
rameter, resulting in grays of varying darkness. Colors are similarly scaled by each interaction,
but only changes of intensity result—there are no changes of hue or saturation.

Fig. 3.19 – Specular transmission with a tint of color(0.8, 0.4, 0.4)

The change of the color of the light due to the df::specular_bsdf distribution function only
occurs at surface interactions. In the physical world, light can be affected by the medium
through which it travels, typically called in computer graphics, "particpating media." This phe-
nomenon is modelled MDL by volume distribution functions, which will be described in [a later
chapter].

© 2021 NVIDIA Corporation MDL Handbook 51

3 Light at a surface 3.7 Glossy interaction

3.6.3 Specular reflection and transmission

Combining specular reflection and transmission only requires a change to the mode value to
df::scatter_reflect_transmit. Like the pure transmission case, the ior is also significant.

Listing 3.6

material specular_reflection_transmission()

= material(

ior: color(1.3), Index of refraction

surface: material_surface(

scattering: df::specular_bsdf(

tint: color(0.6, 0.7, 0.8),

mode: df::scatter_reflect_transmit))); Combined specular reflection and
transmission

Fig. 3.20 – Combined reflection and transmission with BSDF df::scatter_reflect_transmit

As was the case with specular reflection, specular transmission is heavily dependent upon the
spatial and lighting context for its believeability and visual effect. Upon reflection, this makes
sense—these materials depend to such a high degree on what they can reflect and transmit.

3.7 Glossy interaction

By this point, the pattern in this chapter of the simple materials that define surface interaction
should be clear. The structure of the material remains almost the same, with the addition of a
value for the ior field when transmission is defined by the distribution function. The parame-
ters of the distribution functions vary, but have similarities based on whether the distribution
function defines reflection, transmission, or both.

For glossy interaction, a further attribute of surface interaction is defined. Anisotropy describes
a variation in the result of measurement based on the direction in which that measurement is
taken. Physical materials like brushed aluminum display anisotropic reflection due to the fine
grooves in the surface that enhance reflection at right angles to the direction of the grooves.

52 MDL Handbook © 2021 NVIDIA Corporation

3.7 Glossy interaction 3 Light at a surface

In the glossy distribution functions of MDL, the proportions of reflection in the two axes of
direction on the surface (typically defined by the geometric model itself) are defined by fields
named roughness_u and roughness_v (for the canonical axes names u and v).

Listing 3.7

bsdf simple_glossy_bsdf(

float roughness_u,

float roughness_v = roughness_u,
Separate aniosotropic control in the u and v
directions

color tint = color(1.0),

float3 tangent_u = state::texture_tangent_u(0),

uniform scatter_mode mode = scatter_reflect,

By default, the value of roughness_v takes the value of roughness_u. The typical effect of a
default value for a parameter in MDL is to “do nothing,” whatever that might mean for each
particular parameter. In the case of the default value of roughness_v, doing nothing means to
duplicate the required value for roughness_u, so that that glossy reflections are isotropic—light
interaction is not directionally dependent.

The following sections demonstrate isotropic reflection. Anisotropic reflection is a fundamen-
tal component of the implementation of iridescent silk described in “Fabric” (page 145).

3.7.1 Glossy reflection

The following material, glossy_reflection, uses the default behavior of roughness_v to de-
fine isotropic reflection. The other field values specified in df::simple_glossy_bsdf are the
same as in many of the previous materials.

Listing 3.8

material glossy_reflection ()

= material (

surface: material_surface (

scattering: df::simple_glossy_bsdf (

tint: color(0.6),

roughness_u: 0.3, Roughness in u also used for v

mode: df::scatter_reflect))); Reflection mode

With a roughness value of 0.3 for df::simple_glossy_bsdf, material glossy_reflection cre-
ates highlights over the surface of the object that emphasize the position of the emissive sur-
faces that light the scene.

© 2021 NVIDIA Corporation MDL Handbook 53

3 Light at a surface 3.7 Glossy interaction

Fig. 3.21 – Glossy reflection with a roughness value of 0.3

3.7.2 Glossy transmission

As in the specular equivalent to glossy transmission, the index of refraction specifies the degree
of refraction of lighting striking the surface.

Listing 3.9

material glossy_transmission ()

= material (

ior: color(1.3), Index of refraction ;

surface: material_surface (

scattering: df::simple_glossy_bsdf (

tint: color(1),

roughness_u: 0.15, Roughness used for both u and v

mode: df::scatter_transmit))); Transmission mode

However, rendering the objects with glossy_transmission results in very dark areas that do
not correspond with our intuition of a transparent object, glossy or not.

54 MDL Handbook © 2021 NVIDIA Corporation

3.7 Glossy interaction 3 Light at a surface

Fig. 3.22 – Glossy transmission—no reflection

Though they were less visible in the specular case, the dark areas represent areas in which
total internal reflection reduced the light intensity to zero. Such an object is never seen in nature
because of the unusual definition of the surface—only transmision, without any reflection at
all. This unnatural condition was also true for the material that only defined specular trans-
mission, but the error was not so easily seen.

3.7.3 Glossy reflection and transmission

The physically reasonable material for glossy interaction defines both reflection and transmis-
sion:

Listing 3.10

material glossy_reflection_transmission ()

= material (

ior: color(1.3),

surface: material_surface (

scattering: df::simple_glossy_bsdf (

tint: color(1),

roughness_u: 0.15,

mode: df::scatter_reflect_transmit))); Combined reflection and
transmission

Using the glossy_reflection_transmission material in Figure 3.23 (page 56), the apparent
lack of light in the dark areas is compensated by the reflection component.

© 2021 NVIDIA Corporation MDL Handbook 55

3 Light at a surface 3.8 Lighting techniques

Fig. 3.23 – Combined glossy reflection and transmission

3.8 Lighting techniques

The previous sections have shown how simple the textual content of an MDL material can
be yet still produce complex and suggestive imagery. The interaction of emissive and non-
emissive materials provide a variety of design possibilities.

3.8.1 Geometric constructions

A luminaire is the mechanical structure that houses the light-emitting component of a lamp
or lighting fixture. Using MDL, diffuse and emissive materials can be combined to construct
simulated lamps and lighting devices that provide complex illumination effects.

For example, imagine a box, open on one end, constructed of diffuse materials, and containing
a single emissive surface.

diffuse reflection

emission

Fig. 3.24 – Surrounding an
emissive surface with a diffuse

reflection surface

56 MDL Handbook © 2021 NVIDIA Corporation

3.8 Lighting techniques 3 Light at a surface

Inserting a set of these objects in a scene, positioned to enhance their effect on the illumination
of the room with the light intensity adjusted accordingly, can produce an image like Figure
3.25:

Fig. 3.25 – Emissive surfaces contained within non-emissive objects

These geometric objects, simple to construct with a modeling application, could also be rigged
to change size (widening or narrowing the beam of emitted light) or orientation (like spot-
lights), providing animated effects that would not required special features in the modeling
and animation packages.

3.8.2 A global lighting environment

The base MDL module provides a number of utility functions to simplify common tasks in the
development of materials. The base module also provides a function to simulate the environ-
mental illumination like that produced by the sun and the sky. The base functions are described
in Appendix [the appendix that will describe the base functions], but an example of the base::sun_

and_sky function will be useful as a conclusion to this chapter on surface interaction.

The way in which the environmental illumination is specifed is renderer-dependent, but here
is an example of a set of argument values for base::sun_and_sky:

base::sun_and_sky (

sun_direction: -1.0 1.0 -1.0,

horizon_blur: 0.5,

sun_disk_intensity: 0.04,

sun_disk_scale: 1.0)

Specifying this function for environmental illumination and using the scene definition for the
previous renderings produces Figure 3.26 (page 58):

© 2021 NVIDIA Corporation MDL Handbook 57

3 Light at a surface 3.8 Lighting techniques

Fig. 3.26 – Specular reflections using the sun and sky simulation from the MDL “base” module

Notice that in a close-up view, the visual appearance of the objects remains that of mirror-like
surfaces reflecting the sky.

Fig. 3.27 – Close-up of sun and sky simulation

However, our assumption that the objects are reflective is not supported by any obvious vi-
sual clues (for example, other nearby objects that are visible in reflections). The objects are
actually white and blue, with small areas of light brown and tan. This coloring is in fact a
stereotype of an airbrush painting technique to produce chrome. Perhaps photographs of cars
in the desert outside Los Angeles first created this visual sterotype that was then adopted by
airbrush artists. No matter its origin, this visual convention further suggests that creating ef-
fective materials may also be dependent upon historical and cultural circumstances.

58 MDL Handbook © 2021 NVIDIA Corporation

4 Glass
Chapter 3, “Light at a surface,” presented the simplest MDL implementation of specular re-
flection and refraction, resulting in objects that resembled glass. This chapter begins with that
simple model, extending the simulation of glass to include various real-world properties such
as the absorption and scattering of light within the object.

4.1 Geometric structure and the appearance of glass

For the example renderings in this chapter, the three geometric objects have been each been
modeled with three different thicknesses of glass to demonstrate its importance in refraction,
absorption and subsurface scattering.

Shape of the geometric models Cross section showing the thickness of the glass

Fig. 4.1 – Geometric models rendered in this chapter

The simplest specular reflection and refraction model uses the df::specular_bsdf distribu-
tion function for the scattering parameter of the material_surface property.

Listing 4.1

material specular_reflect_transmit (

color tint = color(1.0),

uniform color ior = color(1.3)) =

material (

ior: ior,

surface: material_surface (

scattering: df::specular_bsdf (Specular BSDF

tint: tint,

mode: df::scatter_reflect_transmit))); Mode for both reflection and
transmission

© 2021 NVIDIA Corporation MDL Handbook 59

4 Glass 4.1 Geometric structure and the appearance of glass

Rendering with this material produces Figure 4.2. Note the effect of internal reflection in the
thicker wall of the vase on the left.

Figure 4.2

specular_reflect_transmit(

tint:

color(0.8, 0.9, 1.0))

As a simplification for the rendering of thin sheets of window glass or other objects in which
refractive effects are not typically visible, the thin_wall property of the material struct can
be set to true.

Listing 4.2

material specular_reflect_transmit_thin_walled (

color tint = color(1.0),

uniform color ior = color(1.3)) =

material (

thin_walled: true, Set thin_walled property

ior: ior,

surface: material_surface (

scattering: df::specular_bsdf (

tint: tint,

mode: df::scatter_reflect_transmit)));

With the thin_wall property, light rays are not refracted through the object, though the reflec-
tions of the emissive surfaces lighting the scene are still visible, with a more subtle effect of the
reflected floor at the bottom of the objects.

60 MDL Handbook © 2021 NVIDIA Corporation

4.2 Glossy reflection and transmission 4 Glass

Figure 4.3

specular_reflect_transmit_thin_walled(

tint:

color(0.64, 0.72, 0.80))

The following sections of this chapter demonstrate other possible properties of glass: glossy
reflection and transmission, the Fresnel effect, and subsurface scattering.

4.2 Glossy reflection and transmission

The glass-like example (page 55) of glossy reflection and refraction in Chapter 3 used a “solid”
geometric model in the rendered scene. In simulating glass objects like vases and drinking
glasses, light will pass through four surfaces of the geometric model—the outer and inner
boundaries of the glass form. In glossy transmission through the object, the thickness of the
glass form will affect the apparent blurring of the background as seen through the glass.

This material for glossy reflection and transmission is similar in form to the example of Chapter
3, but provides material parameters for the tint, index of refraction and the surface roughness

Listing 4.3

material glossy_reflect_transmit (

color tint = color(1.0),

float roughness = 0.0,

uniform color volume_ior = color(1.5)) =

let {

bsdf surface_bsdf = df::simple_glossy_bsdf(Glossy distribution function

tint: tint,

roughness_u: roughness, Parameter for the degree of glossiness

mode: df::scatter_reflect_transmit); Mode for both reflection and transmission

} in

material (

ior: volume_ior,

© 2021 NVIDIA Corporation MDL Handbook 61

4 Glass 4.3 Variable transmission at edges

surface: material_surface (

scattering: surface_bsdf));

Rendering with this material produces Figure 4.4.

Figure 4.4

glossy_reflect_transmit(

roughness: .02,

tint:

color(0.8, 0.9, 1.0))

4.3 Variable transmission at edges

Section “Fresnel layering in a material” (page 106) described the affect of the viewing angle on
reflection for thin coatings like varnish. For glass, the Fresnel effect can also be modeled using
df::fresnel_layer to combine the reflection and refraction components.

Listing 4.4

material glossy_reflect_transmit_layers (

color reflection_color = color(1.0),

color transmission_color = color(1.0),

float roughness = 0.0,

uniform color volume_ior = color(1.5),

uniform color layer_ior = color(1.5)) =

let {

bsdf reflection = df::simple_glossy_bsdf(

tint: reflection_color,

roughness_u: roughness,

mode: df::scatter_reflect);

Reflection

bsdf transmission = df::simple_glossy_bsdf (

tint: transmission_color,

roughness_u: roughness,

mode: df::scatter_transmit);

Transmission

62 MDL Handbook © 2021 NVIDIA Corporation

4.3 Variable transmission at edges 4 Glass

bsdf surface_bsdf = df::fresnel_layer (

ior: layer_ior,

layer: reflection,

base: transmission);

Fresnel layering of reflection and
transmission

} in

material (

ior: volume_ior,

surface: material_surface (

scattering: surface_bsdf));

The glossy_reflect_transmit_layers material includes the glossy roughness parameter to
the distribution functions as a parameter to the material itself. By default, the roughness pa-
rameter is 0.0; that is, by default the material produces specular reflection and refraction. The
reflection and refraction colors default to white (color(1.0, 1.0, 1.0)).

In the first example rendering, only the reflection color has been changed from the default
white to blue. Due to the Fresnel layering, the blue tint of the reflection is most produced at
the edges, for example, at the bottom of the vase.

Figure 4.5

glossy_reflect_transmit_layers(

reflection_color:

color(0.8, 0.9, 1.0))

© 2021 NVIDIA Corporation MDL Handbook 63

4 Glass 4.3 Variable transmission at edges

In Figure 4.6, the reflection color is white and the transmission color is now set to blue.

Figure 4.6

glossy_reflect_transmit_layers(

transmission_color:

color(0.8, 0.9, 1.0))

The effect of the combination of reflection and transmission with Fresnel layering can be made
clearly visible by defining an extreme value for the reflection. In Figure 4.7, the reflection color
has been set to pure red. The pure red within the glass object shows the effect of the increase of
reflection predicted by the Fresnel equations; the angles of incidence within the glass creates
total internal reflection.

Figure 4.7

glossy_reflect_transmit_layers(

reflection_color:

color(1, 0, 0),

transmission_color:

color(0.8, 0.9, 1.0))

One of the physical properties of dielectric materials like glass and plastic is that dielectric re-
flections are not changed in color by the object’s color. This is modeled in the MDL material
with a default value of white for reflections. The unrealistic reflection color (from the stand-
point of physics) of red provides a clear demonstration of total internal reflection, however.

64 MDL Handbook © 2021 NVIDIA Corporation

4.3 Variable transmission at edges 4 Glass

Figure 4.8 (page 65) uses a light yellow reflection color very close to white which, though still
not a realistic property of dielectrics, creates a subtle patina effect.

Figure 4.8

glossy_reflect_transmit_layers(

reflection_color:

color(1.0, 0.95, 0.9),

transmission_color:

color(0.8, 0.9, 1.0))

With a roughness value of 0.02 the glossy reflection and transmission effects can be seen using
the same near-white reflection color as before:

Figure 4.9

glossy_reflect_transmit_layers(

reflection_color:

color(1.0, 0.95, 0.9),

transmission_color:

color(0.8, 0.9, 1.0),

roughness: 0.02)

© 2021 NVIDIA Corporation MDL Handbook 65

4 Glass 4.4 The appearance of color through absorption

4.4 The appearance of color through absorption

The previous materials all defined the color of light transmission through glass as a boundary
effect in which the light is changed in color only at its intersection at the object’s surface. The
volume property of the material struct defines how light is modified as it moves through an
object. The volume property is an instance of the material_volume struct:

Listing 4.5

struct material volume {

vdf scattering = vdf(); Volume distribution function

color absorption_coefficient = color();

color scattering_coefficient = color();

};

An instance of the material_volume struct is added to the material struct as the argument to
the volume field.

Listing 4.6

material glossy_reflect_transmit_absorb (

color surface_color = color(1.0),

float roughness = 0.0,

uniform color absorption = color(1.0),
Parameter used in the “material_volume”
property

uniform color volume_ior = color(1.5)) =

let {

bsdf surface_bsdf = df::simple_glossy_bsdf(

tint: surface_color,

roughness_u: roughness,

mode: df::scatter_reflect_transmit);

} in

material (

ior: volume_ior,

surface: material_surface (

scattering: surface_bsdf),

volume: material_volume(

absorption_coefficient: absorption));
Volume definition

In an image rendered using material gloss_reflect_transmit_absorb the “thickness” of the
glass – the distance between boundaries—affects the degree of absorption of the red, green,
and blue components of the absorption color.

66 MDL Handbook © 2021 NVIDIA Corporation

4.4 The appearance of color through absorption 4 Glass

Figure 4.10

glossy_reflect_transmit_absorb(

absorption:

color(10, 6, 2))

The parameter for absorption is a probability density defined for one meter in world space. A
dependency on world space implies that the numerical values of the geometric model will
affect how much absorption will occur. For the numerical values of the geometric model in
Figure 4.10, the absorption coefficient required to produce an effect similar to the previous
renderings (determined experimentally) was color(10,6,2)—hardly an intuitive quantity.

To improve the visual control of absorption, the following material calculates the absorption
coefficient based on the distance at which full absorption would occur and the color that such
full absorption would produce.

Listing 4.7

material glossy_reflect_transmit_absorb_falloff (

color surface_color = color(1.0),

uniform color transmission_color = color(1.0),
Color produced by full
absorption

uniform float transmission_distance = 1.0, Distance at which full absorption
occurs

float roughness = 0.0,

uniform float volume_ior = 1.5) =

let {

bsdf surface_bsdf = df::simple_glossy_bsdf(

tint: surface_color,

roughness_u: roughness,

mode: df::scatter_reflect_transmit);

color absorption_coefficient =

transmission_distance <= 0 ?

color(0.0) :

-math::log(transmission_color) / transmission_distance;

Calculation of
absorption
coefficient

} in

material (

© 2021 NVIDIA Corporation MDL Handbook 67

4 Glass 4.4 The appearance of color through absorption

ior: color(volume_ior),

surface: material_surface (

scattering: surface_bsdf),

volume: material_volume(

absorption_coefficient: absorption_coefficient));
Volume property

The two parameters of color and distance, transmission_color and transmission_distance,
provide an interface to this material that resembles the previous materials based on boundary
calculations. In Figure 4.11, the same color is used for the transmission_color as was used for
the colors of the previous materials; the transmission_distance was adjusted experimentally
to create the desired effect.

Figure 4.11

glossy_reflect_transmit_absorb_falloff(

transmission_color:

color(0.8, 0.9, 1.0),

transmission_distance: .05)

The example renderings of the glossy_reflect_transmit_absorb_falloff material have all
used the default roughness value of 0.0, producing specular reflection and transmission. Figure
4.12 (page 69) adds a roughness value of 0.02 to the material parameters of Figure 4.11.

68 MDL Handbook © 2021 NVIDIA Corporation

4.5 Subsurface scattering as a model of glass 4 Glass

Figure 4.12

glossy_reflect_transmit_absorb_falloff(

transmission_color:

color(0.8, 0.9, 1.0),

transmission_distance: .05,

roughness: 0.02)

4.5 Subsurface scattering as a model of glass

In addition to controlling the absorption of light in a volume, the MDL volume property spec-
ifies how light is scattered. Like the absorption coefficient, the scattering coefficient is a proba-
bility density defined for one meter in world space. The following material includes scattering
in the volume property, using the same strategy as in the previous material to create intuitive
parameters of distance and color for scattering as well as for absorption.

Listing 4.8

material subsurface_scattering (

color surface_color = color(1.0),

uniform color scattering_color = color(0.05, 0.05, 0.05),

uniform color transmission_color = color(0.1, 0.95, 0.65),

uniform float transmission_distance = 0.3,

Absorption
and scattering
parameters

float roughness = 0.0,

uniform float volume_ior = 1.5) =

let {

bsdf surface_bsdf = df::simple_glossy_bsdf(

tint: surface_color,

roughness_u: roughness,

mode: df::scatter_reflect_transmit);

} in

material (

ior: color(volume_ior),

surface: material_surface (

scattering: surface_bsdf),

volume: material_volume(

© 2021 NVIDIA Corporation MDL Handbook 69

4 Glass 4.5 Subsurface scattering as a model of glass

scattering: df::anisotropic_vdf(

directional_bias: -0.5),
Volume distribution function

scattering_coefficient:

(transmission_distance <= 0) ?

color(0.0) :

-math::log(scattering_color) / transmission_distance,

Scattering
coefficient

absorption_coefficient:

(transmission_distance <= 0) ?

color(0.0) :

-math::log(transmission_color) / transmission_distance));

Absorption
coeffi-
cient

The scattering color describes how much of the light is scattered, so that darker colors scatter
the light to a smaller degree that brighter colors. Using this material with a scattering color of
dark gray produces Figure 4.13:

Figure 4.13

subsurface_scattering(

transmission_color:

color(0.8, 0.9, 1.0),

scattering_color:

color(.1, .1, .1),

transmission_distance: .1

)

With a scattering color that has a non-gray hue, the red, green and blue components of the light
are scattered by different amounts. In Figure 4.14 (page 71), the scattering color is color(0.1,0.1,0.3).
Because more of the blue component is scattered than the red and green components, the result
is a tinting effect of yellow—the complementary color of blue. The yellow combines with the
blue absorption color to produce the overall effect of a variation between blue and green.

70 MDL Handbook © 2021 NVIDIA Corporation

4.5 Subsurface scattering as a model of glass 4 Glass

Figure 4.14

© 2021 NVIDIA Corporation MDL Handbook 71

4 Glass 4.5 Subsurface scattering as a model of glass

72 MDL Handbook © 2021 NVIDIA Corporation

5 Light in a volume
Every physically-based simulation ultimately concerns physical quantities; that
is, measurable attributes of phenomena or of matter. Implicit in any equation
expressing a relationship among physical quantities is a system of units in
which the quantities were measured. Thus, each algebraic equation with a
physical interpretation has a corresponding dimensional equation showing how
the units combine. Unfortunately, the units for radiometric quantities can be
troublesome, owing to the overwhelming number of distinct and sometimes
inconsistent definitions. As we begin to consider domains outside of radiative
transfer the problem grows worse; each field has its own bewildering
assortment of units and terminology. This unfortunate fact is largely historical,
resulting from independent development of many fundamentally related fields.

James Arvo, Transfer Equations in Global Illumination, 1993.

So far, the materials of the previous chapters have almost exclusively described the interaction
of light at a surface. In the chapter on glass, the last two sections (page 66) used the volume
property of a material to modify the color and opacity of the glass object. But for purposes of
design, such treatment is often similar to the use of surface properties in its aesthetic intent.

Fig. 5.1 – Volumetric effects in short distances as an attribute of design

© 2021 NVIDIA Corporation MDL Handbook 73

5 Light in a volume 5.1 Background: Categories of interaction in a volume

To simulate natural phenomena like smoke or fog, a geometric object serves in MDL as an
enclosure for volumetric rendering effects. Now the rendering is no longer concerned only
with surfaces; instead, a surface bounds a three-dimensional region of space within which the
rendering system simulates the phenomenon.

5.1 Background: Categories of interaction in a volume

The physical medium through which light passes as it strikes objects, making them visible,
also participates in modifying the light. The absence of such a participating medium in older
rendering systems simulated a perfect vacuum, but such interactions cannot be ignored when
rendering calculations are based on physical reality. Alas, issues of efficiency must also be
considered. How these volumetric effects actually appear suggests implementation strategies
for rendering.

For example, the four photographs in Figure 5.2 to Figure 5.5 depict physical situations that
renderings systems could attempt to represent:

Fig. 5.2 – Small bubbles Fig. 5.3 – Drops of milk in water

Fig. 5.4 – Milky water Fig. 5.5 – Drops of milk in milky
water

74 MDL Handbook © 2021 NVIDIA Corporation

5.1 Background: Categories of interaction in a volume 5 Light in a volume

How these images might be simulated can be considered a matter of scale. In a physical sense,
all four are the result of light’s interaction with geometric objects, from the pinprick-sized wa-
ter bubbles to the microscopic casein protein molecules in the milk. As computational power
has increased, modeling very small objects geometrically, often in combination with complex
motion definition, called a particle system,1 has enabled the visually convincing depiction of
dust storms, fire, and the spray of ocean waves. This technique could be used to model the
structure and motion in Figure 5.2 (page 74) and Figure 5.3 (page 74) and the trail of milk
drops in Figure 5.5 (page 74).

However, the cloudy appearance of the last two photographs is best served by a statistical
approach. The aggregate behavior of light’s interaction with an extremely large number of
objects—the protein molecules in milk—can be defined by scaling factors used in mathematical
models implemented by the rendering system. The models assume that very small particles are
suspended in a medium; the numerical inputs, or coefficients, of the models define how light is
affected by the particles. These coefficients form the basis for the parameters of MDL’s volume
distribution functions.

The models for volumetric effects may be developed using known properties of the medium
that can be represented mathematically. For example, the droplets of water suspended in
clouds are small enough that surface tension makes them almost perfectly spherical in shape.
That geometric observation, along with well-known properties of light’s interaction with wa-
ter, can form the basis for the mathematical modeling of clouds and fog. Conversely, a math-
ematical model can be derived from a large number of measurements of light’s behavior in a
medium. The accuracy of this heuristic technique for model development can be tested against
further measurements, with the model improved to an acceptable degree of accuracy.

Like the material definitions for reflection and transmission, MDL provides an abstraction of
the mathematical models implemented in the rendering system to produce volumetric effects.
Materials containing a volume distribution function can be combined in the same manner
as other materials (as described in “Combining distribution functions” (page 93)), enabling
complex behavior from a small set of primitive materials.

5.1.1 Modeling a volume

The two primary MDL parameters describing volumetric interactions define the modification
of light as it passes through a given distance of the medium. These two parameters answer
questions about the behavior of the medium:

Absorption
How much light in a given distance is absorbed by the medium?

Scattering
How much light in a given distance is scattered by the medium?

In the simplest case, light is scattered by a particle evenly in all directions, similar to the purely
diffuse reflection of light by a surface. However, light may also be scattered unevenly between
the forward and backward directions of the light, called forward scattering and backward scatter-
ing. In pure forward scattering, there is no change to the light’s direction after it interacts with
a particle; in pure backward scattering, the light’s direction is reversed, directly backward to
the source. In nature, light’s interaction with particles is typically a combination of the two
scattering directions.

1. https://cal.cs.umbc.edu/Courses/CS6967-F08/Papers/Reeves-1983-PSA.pdf

© 2021 NVIDIA Corporation MDL Handbook 75

https://cal.cs.umbc.edu/Courses/CS6967-F08/Papers/Reeves-1983-PSA.pdf

5 Light in a volume 5.2 The volume distribution function

Direction
In which direction in the medium is the light scattered?

Particles in a physical medium may also emit light. MDL does not model this behavior, but
emission must be considered for a complete accounting of the appearance of a volume.

Emission
Do the particles of the medium emit light, and if so, how much?

5.2 The volume distribution function

The previous chapters often relied on familiar experiences in the physical world to develop
an intuition for their materials—reflections in mirrors, the sheen of silk, the indistinct shapes
seen through frosted glass. The effect of these materials only depended on the shape of the
surfaces to which they were assigned. However, volumetric effects in MDL are dependent on
the distance that light has traveled through the medium. “Distance” in this case is defined by
the scale of the geometric model as represented by its three-dimensional coordinates. One set
of parameters for a volume distribution function can therefore produce different visual results
from two objects of the same shape if the scale of their numerical representations do not match.

The volume property in a material also displays the shape of the light emission, while the illu-
mination of surfaces can only suggest it. This shape can be controlled by a combination of
emissive and non-reflecting materials in the same manner as the container used in “Geometric
constructions” (page 56). Figure 5.6 shows the geometric structure of the light source used for
many of the rendered images in this chapter.

Fig. 5.6 – An emissive polygon inside a non-reflective container

“The spread of light emission” (page 87) also demonstrates controlling the emission shape with
the emission distribution function itself.

In addition to considerations of object scale and emission shape, the materials with a vol-
ume property differ from surface-based materials in that they can obscure the very effect
they produce. To demonstrate these effects of absorption and scattering, the light source and
spheres of Figure 5.7 (page 77) are enclosed in a thin rectangular box to provide a somewhat
two-dimensional slice of the three-dimensional effects of absorption and scattering. Figure 5.8
(page 77) uses a sub-surface material similar to the glass example described in the beginning
of the chapter. For the examples that follow, the enclosing object is oriented as in Figure 5.10
(page 77).

76 MDL Handbook © 2021 NVIDIA Corporation

5.2 The volume distribution function 5 Light in a volume

Fig. 5.7 – Set of diffuse reflecting spheres
and a light source

Fig. 5.8 – Spheres and a light source in an
object

Fig. 5.9 – The orientation for examples Fig. 5.10 – A simple material with a volume
property

To simplify the demonstration of volumetric effects, Figure 5.10 uses the isotropic_volume

material in Listing 5.1.

Listing 5.1

material isotropic_volume(

color scattering = color(1.0),

color absorption = color(1.0))
Volume parameters

= material (

surface: material_surface(

scattering: df::specular_bsdf(

tint: color(1.0),

mode: df::scatter_transmit)),

Surface property to act as a clear, non-refracting
container for the volume

volume: material_volume(

absorption_coefficient: absorption,

scattering_coefficient: scattering));

Volume property

© 2021 NVIDIA Corporation MDL Handbook 77

5 Light in a volume 5.3 Scattering and absorption

The isotropic_volume material defines a clear, non-refracting surface property and serves
as a enclosure for the scattering of light defined in the volume property. By default, light is
scattered with equal probability in all directions, thus “isotropic.” This material is used in the
examples of the next sections.

As a further simplification for the initial demonstrations of the parameters of the volume dis-
tribution function, only gray values are used for the parameter values. Color (that is, red, green
and blue components with differing values) is added as a parameter to the volume material in
sections “Colored scattering” (page 85) and “Colored absorption” (page 86).

5.3 Scattering and absorption

Figure 5.11 shows the combined effect of scattering and absorption using the isotropic_

volume in Listing 5.1 (page 77).2

Fig. 5.11 – Scattering increases from left to right; absorption increases from top to bottom

2. The HTML version of this book at http://mdlhandbook.com/mdl_handbook/ can display the images at higher
resolution.

78 MDL Handbook © 2021 NVIDIA Corporation

5.4 Scattering direction 5 Light in a volume

5.4 Scattering direction

In Figure 5.11 (page 78), the isotropic_volume material scatters photons from a particle with
all possible directions being equally likely. This is the default behavior of the scattering pa-
rameter of the material_volume property. Listing 5.2 defines scattering as the volume dis-
tribution function df::anistropic_vdf. Its single parameter, directional_bias, has values
from -1.0 to 1.0. A value of -1.0 defines pure backward scattering; 1.0 is pure forward scattering.
A value of 0.0 defines the directional behavior of isotropic scattering. The lines with comments
in Listing 5.2 are the additions made to Listing 5.1 (page 77) to provide directional control of
scattering.

Listing 5.2

material anisotropic_volume(

color absorption = color(1.0),

color scattering = color(1.0),

float directional_bias = 0.0, Control of photon direction a�er scattering by particle

uniform color ior = color(1.0))

= material (

ior: ior,

surface: material_surface(

scattering: df::specular_bsdf(

tint: color(1.0),

mode: df::scatter_transmit)),

volume: material_volume(

scattering: df::anisotropic_vdf(

directional_bias: directional_bias),
Volume distribution function includes
directional control

absorption_coefficient: absorption,

scattering_coefficient: scattering));

Figure 5.12 uses a small emissive polygon facing to the right to show the scattering effects with
varying values of the directional_bias parameter.

Fig. 5.12 – Parameter directional_bias from -0.99 to 0.99 in even increments

The rendered images in the rest of this chapter use isotropic_material for volumes, but
physical simulations of complex anisotropic behavior will also need to take scattering direction
into account.

© 2021 NVIDIA Corporation MDL Handbook 79

5 Light in a volume 5.5 An experimental basis for volumemodeling

5.5 An experimental basis for volumemodeling

Considering the photon-and-particle model of participating media, the images of Figure 5.11
(page 78), after some reflection, may make intuitive sense. But what is the relationship of these
varying scattering and absorption parameters to the physical world?

A research paper in 2006 described a means for determining the scattering and absorption
parameters based on real-world measurements:

In this paper, we present a simple device and technique for robustly estimating
the properties of a broad class of participating media that can be either (a)
diluted in water such as juices, beverages, paints and cleaning supplies, or (b)
dissolved in water such as powders and sugar/salt crystals, or (c) suspended in
water such as impurities. The key idea is to dilute the concentrations of the
media so that single scattering effects dominate and multiple scattering
becomes negligible, leading to a simple and robust estimation algorithm.

Srinivasa G. Narasimhan, et al., “Acquiring scattering properties of participating media by

dilution”,3 SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, July 2006, pp. 1003-1012.4

The researchers created a device with which they could measure the properties of various
dilutions of a given medium. Figure 5.13 is an illustration from the paper—two photographs
of the device and the accompanying caption:

Figure 3: Two views of the apparatus used to
measure scattering properties of water-soluble
media. A glass tank with rectangular cross-
section is fitted with a small light bulb. The glass
is anti-reflection coated. Different volumes of
participating media are diluted with water in the
tank, to simulate different concentrations. A
camera views the front face of the tank at normal
incidence to avoid refractions at the
medium-glass-air boundaries.

Fig. 5.13 – Figure 3 from “Acquiring scattering properties of participating media by dilution”

The researchers photographed the result of various media to estimate its scattering and absorp-
tion parameters. Figure 5.14 from the paper demonstrates the difference between high degrees
of scattering and absorption:

Figure 6: Images illustrating different degrees of
scattering and absorption. [Top row] Images of
milk at various concentrations. Since milk is a
highly scattering liquid, we observe an increase in
blurring with increasing concentration. [Bottom
Row] Images of red wine at various
concentrations. Red wine is a highly absorbing
liquid, showing only a saturation of the bulb
color with increasing concentration, and no
blurring. The highlighted images are chosen for
estimating the parameters.

Fig. 5.14 – Figure 6 from “Acquiring scattering properties of participating media by dilution”

3. https://cseweb.ucsd.edu/˜ravir/dilution.pdf

4. https://dl.acm.org/doi/abs/10.1145/1179352.1141986

80 MDL Handbook © 2021 NVIDIA Corporation

https://cseweb.ucsd.edu/~ravir/dilution.pdf
https://cseweb.ucsd.edu/~ravir/dilution.pdf
https://dl.acm.org/doi/abs/10.1145/1179352.1141986

5.6 The volume’s enclosing object 5 Light in a volume

How are the parameters of the MDL volume property related to the behavior of light in real-
world terms? For example, one rendering system implementation of MDL uses the Henyey-
Greenstein phase function5 to implement the effects of scattering, but other implementations
are possible. MDL does not define how the volume property should be calculated; it only pro-
vides control over the “amount” of absorption and scattering, with optional control of the
direction of scattering (in the anisotropic case).

Given the complexity of the resulting images, the two volume materials in this chapter are syn-
tactically quite simple. This chapter focuses on ways which the capabilities of MDL volumes
can be explored, concentrating on those aspect of volumetric rendering that are valid for any
rendering system that implements MDL.

5.6 The volume’s enclosing object

To produce an apparent environment with the visual effect of participating media, MDL re-
quires an enclosure object. A material is assigned to this object in the same manner as the ma-
terials of the previous chapters. For example, the cube in Figure 5.15 is assigned the diffuse
reflection material from the section “A material for diffuse reflection” (page 34). The cubes in
Figure 5.16 to Figure 5.18 are assigned the isotropic_material from Listing 5.2 (page 79), but
with different values for scattering and absorption.

Fig. 5.15 – Diffuse
reflection

Fig. 5.16 – Scattering only Fig. 5.17 – Absorption
only

Fig. 5.18 – Scattering and
absorption

5.6.1 Scattering

With a light source within the enclosure object, increasing the value of the scattering parameter
gradually floods the entire volume with light. The default volume distribution function in the
volume property scatters the light with an equal probability in all directions.

Figure 5.19 (page 82) shows the result of increasing the value of the scattering parameter. The
absorption parameter has been set to zero.

5. L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy, Astrophysical Journal 93:70-83, 1941.

© 2021 NVIDIA Corporation MDL Handbook 81

5 Light in a volume 5.7 Volume enclosures as scene elements

Fig. 5.19 – Increasing scattering

5.6.2 Absorption

With no absorption defined for the volume property, light will continue to be scattered through-
out the enclosure object based only on the value of the scattering parameter. However, the light
in a given direction will be decreased when the scattering parameter increases, as the obscured
light source in Figure 5.19 demonstrates.

Absorption is cumulative; the light at a point in the volume enclosure is dependent on how
far the “photon” has traveled to reach that point. The higher the scattering value, the more
frequently the photon has “collided” with a particle, increasing the distance it has traveled
and the absorption of its energy.

Figure 5.20 shows the result of increasing the value of the absorption parameter. Scattering is
set to a non-zero value; with a value of zero no light would be visible in the volume enclosure.

Fig. 5.20 – Increasing absorption

5.7 Volume enclosures as scene elements

If the apparent enclosure for the volume is not transparent, two objects with two different
materials are required: one pair for the volume enclosure and one for the object that is part
of the rendered scene, a scene object. Figure 5.21 (page 83) shows a volume enclosure that is
smaller than the scene object. In Figure 5.22 (page 83), the objects are the same size.

82 MDL Handbook © 2021 NVIDIA Corporation

5.8 Objects within a volume 5 Light in a volume

Fig. 5.21 – Scene object and smaller volume enclosure Fig. 5.22 – Matching scene object and volume
enclosure

The inside of the scene object Figure 5.22 is much brighter than in Figure 5.21, in which the
light reaches the scene object and is then scattered back into the volume enclosure.

5.8 Objects within a volume

The area of a shadow in a volume is made visible to varying degrees by the values of the
scattering and absorption parameters. Reflected color may be visible in a volume where an
object is illuminated, as in the slightly yellow haze to the left of the yellow block in Figure 5.23
and Figure 5.24. Color bleeding turns the rightmost face of the blue block on the left green.

Fig. 5.23 – Diffuse reflection without volume
absorption

Fig. 5.24 – Diffuse reflection with volume absorption

© 2021 NVIDIA Corporation MDL Handbook 83

5 Light in a volume 5.8 Objects within a volume

The effects of an object’s color are more easily seen when light is transmitted through an object.
In Figure 5.25 and Figure 5.26, the blocks are assigned as specular transmission material with
an index of refraction of 1.0

Fig. 5.25 – Transmission without volume absorption Fig. 5.26 – Transmission reflection with volume
absorption

In the same way that the refraction of light that strikes a diffuse surface produces caustics,
refracted light in a volume produces volume caustics. In Figure 5.27 and Figure 5.28, the material
of the lens-shaped objects contains the df::specular_bsdf with a mode value of df::scatter_

transmit and an index of refraction of 1.52.

Fig. 5.27 – Volume caustics with low-level scattering Fig. 5.28 – Volume caustics with high-level scattering

84 MDL Handbook © 2021 NVIDIA Corporation

5.9 Light color 5 Light in a volume

5.9 Light color

Unlike the previous examples, the emissive materials in Figure 5.29 and Figure 5.30 use color
for the intensity value of the material_emission property. In Listing 5.3, the red_light

material has no parameters, and defines the emission intensity as a color:

Listing 5.3 – Diffuse emission with red intensity

material red_light()

= material (

thin_walled: true,

surface: material_surface (

emission: material_emission (

emission: df::diffuse_edf(),

intensity: color(1.0, 0.0, 0.0)))); Light “color”

The green and blue lights are defined in the same manner. The surfaces struck by the three
lights in Figure 5.29 show the various colors produced by combination—cyan, magenta and
yellow. The scattered light in Figure 5.30 show the same result in the way the light colors are
combined in the overlapping region of the lights.

Fig. 5.29 – No scattering or absorption Fig. 5.30 – Scattering and absorption

5.10 Colored scattering

The previous section used colored (non-gray-scale) lights. Figure 5.31 (page 86) and Figure 5.32
(page 86) return to “white” light, but use a color for the scattering parameter instead.

Listing 5.4 – Using blue for the scattering parameter

material blue_scattering()

= material (

surface: material_surface(

© 2021 NVIDIA Corporation MDL Handbook 85

5 Light in a volume 5.11 Colored absorption

scattering: df::specular_bsdf(

tint: color(1.0),

mode: df::scatter_transmit)),

volume: material_volume(

absorption_coefficient: color(0.3), “White” absorption

scattering_coefficient: color(0.1, 0.1, 0.15))); “Blue” scattering

Intuitively, the “blue” value for scattering means that more blue light is scattered, so the visible
effect of the scattered light becomes “more blue” as the parameter value becomes “more blue.”

Fig. 5.31 – Scattering: color(0.1, 0.1, 0.15) Fig. 5.32 – Scattering: color(0.1, 0.1, 0.3)

The previous paragraph begins to have an proliferation of quotation marks; using an arbitrary
color as a scattering parameter is not an intuitive concept from our day-to-day experience.

5.11 Colored absorption

Absorption can also be defined as a color, but the parameter value produces the opposite color
in the visual result. Removing blue is equivalent to increasing the red and green, resulting in a
yellow hue.

Listing 5.5 – Using blue for the absorption parameter

material blue_absorption()

= material (

surface: material_surface(

scattering: df::specular_bsdf(

tint: color(1.0),

mode: df::scatter_transmit)),

volume: material_volume(

86 MDL Handbook © 2021 NVIDIA Corporation

5.12 The spread of light emission 5 Light in a volume

absorption_coefficient: color(0.0, 0.0, 0.2),
“Blue” absorption, resulting in
yellow

scattering_coefficient: color(0.5))); “White” scattering

As more blue is absorbed, the color of the volume is dominated by yellow, shown in the dif-
ference between Figure 5.33 and Figure 5.34:

Fig. 5.33 – Absorption: color(0.0, 0.0, 0.2) Fig. 5.34 – Absorption: color(0.0, 0.0, 0.9)

5.12 The spread of light emission

The light container (page 76) earlier in the chapter shaped the extent of light emission through
a non-reflective object that surrounded an emissive polygon. In all the examples so far, light
emission has been implemented by the emission distribution function df::diffuse_edf. The
word “diffuse” has the same meaning here as in “diffuse reflection”—the light is emitted
evenly in all directions in the hemisphere above each emissive point.

Listing 5.6 – Diffuse emission

material emission (

color tint = color(1.0))

= material (

surface: material_surface (

emission: material_emission (

emission: df::diffuse_edf(), Diffuse emission

intensity: tint)));

MDL provides another emission distribution function, df::spot_edf, which defines the angle
of emission, the light’s spread. The functions’ spread parameter is the angle in radians around
the normal vector of an emissive point. This radian measure varies from 0 to π. In Listing 5.7,
the material spotlight_emission normalizes spread with the parameter spread_factor as a
value in the range 0.0 to 1.0.

© 2021 NVIDIA Corporation MDL Handbook 87

5 Light in a volume 5.12 The spread of light emission

Listing 5.7

material spotlight_emission(

uniform float spread_factor = 1.0,

color tint = color(1.0))

= material (

thin_walled: true,

surface: material_surface (

emission: material_emission (

emission: df::spot_edf (“Spotlight” emission

exponent: 1.0,

spread: spread_factor * math::PI, Normalized spread value

global_distribution: true),

intensity: tint)));

In Figure 5.35, the light object of previous examples is replaced by an emissive polygon that
approximates a circle. The spread parameter of the ten images varies evenly from 1.0 to 0.1.
The spread value of 1.0 in the first image is equivalent to the effect produced by df::diffuse_

edf as light is emitted evenly toward points in the hemisphere.

Fig. 5.35 – Using material spotlight_emission with a spread_factor from 1.0 to 0.1

Graphical user interfaces for rendering applications typically have many ways of defining light
sources in a rendered scene. Some of these features may reflect a legacy of lighting tricks that
compensated for the lack of indirect illumination at that time. Combining emissive materials
with geometric structures—light containers, bounce cards, rings of small emissive polygons—
enable lighting design in a rendering system based on MDL to model traditional photographic
practice.

88 MDL Handbook © 2021 NVIDIA Corporation

5.13 The removal of obstacles 5 Light in a volume

5.13 The removal of obstacles

Without light, objects are not visible, but without objects, the presence of light is unknown.
When light interacts with the medium of the environment in MDL, the interaction is not mod-
eled as a series of boundary events, but as an apparently continual modification of light inten-
sity and direction. Now the roles are reversed; the infinitesimal particles give the light form
and thereby disappear.

...I had a dream which both frightened and encouraged me. It was night in some
unknown place, and I was making slow and painful headway against a mighty
wind. Dense fog was flying along everywhere. I had my hands cupped around
a tiny light which threatened to go out at any moment... Suddenly I had the
feeling that something was coming up behind me. I looked back, and saw a
gigantic black figure following me... When I awoke I realized at once that the
figure was a “specter of the Brocken,” my own shadow on the swirling mists,
brought into being by the little light I was carrying.

Carl Jung, Memories, Dreams, Reflections, 1962.

© 2021 NVIDIA Corporation MDL Handbook 89

5 Light in a volume 5.13 The removal of obstacles

90 MDL Handbook © 2021 NVIDIA Corporation

Part 3 Material combinations

© 2021 NVIDIA Corporation MDL Handbook 91

92 MDL Handbook © 2021 NVIDIA Corporation

6 Combining distribution functions
The previous chapter presented all the bidirectional scattering distribution functions (BSDFs)
defined by MDL. The BSDF value produced by calling a BSDF constructor is an elemental type
in the MDL language—as an author of a material, you do not need to be aware of its internal
structure, but only of the parameters that control its behavior during the rendering process.

To create appearance models beyond the simple materials of the previous chapter, BSDFs can
be combined using combiner functions. A BSDF combiner function produces a BSDF, just like the
value returned by a BSDF constructor. Both BSDF constructors and combiner functions use the
same function-like syntax, with a list of arguments contained within parentheses. However, a
BSDF combiner function uses arguments that are themselves BSDFs.

Though the combinations provided by combining functions are only the result of arithmetic
operations on numerical values, it is useful to compare these combinations to familiar activities
in the physical world:

• Mixing—Two or more BSDFs are combined in the manner of mixing different colors of
paint, in which the MDL mixing function specifies the proportion of each BSDF to be
used in the mix.

• Layering—Two BSDFs are combined, with one BSDF considered to be the base upon which
a layer is applied, like the application of a coat of varnish over a painted surface.

Sometimes the arithmetic relationship between two BSDFs can be as easily expressed by mix-
ing as by layering. When simulating an effect in the physical world, you should attempt to
mimic its structure in your design of BSDF combinations. Changes—fixing errors, making
improvements—are inevitable for a complex combination of BSDFs. Making these changes
is easier when you first consider the real-world effect being modeled, which can then suggest
how you should change the material. For example, combining two layers evenly or mixing
two BSDFs by the same amount will produce equivalent results, but lacquer painted on wood
makes much more intuitive sense as a process of layering, and not as one of mixing.

6.1 Layering functions

In the simplest type of BSDF layering, weighted layering, a scaling factor, called the weight, de-
termines the fraction of the layer to be applied over the base.

BSDF layer

over

BSDF base

scaled by the layer weight

scaled by 1.0 minus the layer weight

Fig. 6.1 – A layer over a base, scaled by the weighting factor

© 2021 NVIDIA Corporation MDL Handbook 93

6 Combining distribution functions 6.2 Weighted layering

The other three layering types all similarly define a layer applied over a base based on a
weighting factor, but differ in how the fractional amounts of layer and base are calculated.

Layering function Effect

weighted_layer Add BSDF layer based on a weighting factor

fresnel_layer Add BSDF layer based on a weighting factor and a Fresnel term
expressed by an index of refraction

custom_curve_layer Add BSDF layer based on weighting factor and directionally
dependent curve function

measured_curve_layer Add BSDF layer based on weighting factor and measured
reflectance curve

The four layering functions

This chapter first describes layering and mixing two BSDFs. Later sections describe how multi-
ple BSDFs can be combined, as well as suggesting strategies for managing the structural com-
plexity of more elaborate material designs. Later chapters describe the combination of multiple
EDFs or VDFs, in which physical principles limit the combination mode to mixing.

6.2 Weighted layering

The syntax of the layering function when it is used in a material is the same as the syntax
of the distribution functions—the name of the function, followed by a parenthesized list of
arguments, separated by commas.

df::weighted_layer (

weight: layer-fraction,

layer: BSDF,

base: BSDF)

For the first example of weighted layering, a df::simple_glossy_bsdf will be layered over a
df::diffuse_reflection_bsdf. These BSDFs can be visualized by using each separately in a
minimal material.

To visualize the base argument to df::weighted_layer, Figure 6.2 (page 95) is rendered using
df::diffuse_reflection_bsdf:

94 MDL Handbook © 2021 NVIDIA Corporation

6.2 Weighted layering 6 Combining distribution functions

Figure 6.2

material red() =

material (

surface:

material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint:

color(0.3, 0.03, 0.05))));

To visualize the layer argument, Figure 6.3 is rendered using df::simple_glossy_bsdf:

Figure 6.3

material shiny() =

material (

surface:

material_surface (

scattering:

df::simple_glossy_bsdf (

tint: color(0.15),

roughness_u: 0.08,

mode: df::scatter_reflect)));

© 2021 NVIDIA Corporation MDL Handbook 95

6 Combining distribution functions 6.2 Weighted layering

In the same way that the two BSDFs were used for the scattering argument of the material_

surface constructor, the BSDFs are now used as arguments to df::weighted_layer:

Listing 6.1

material shiny_red(

float shiny_weight = 0.5) =

material (

surface: material_surface (

scattering: df::weighted_layer (Layering function

weight: shiny_weight, Weighting factor

layer: df::simple_glossy_bsdf (

tint: color(.15),

roughness_u: .08,

mode: df::scatter_reflect),

Shiny component

base: df::diffuse_reflection_bsdf (

tint: color(0.3, 0.03, 0.05)))));
Diffuse red component

The default value of 0.5 for the shiny_weight parameter of material shiny_red produces an
appearance which is composed of equal parts of the two BSDFs in Figure 6.4:

Figure 6.4

shiny_red()

96 MDL Handbook © 2021 NVIDIA Corporation

6.2 Weighted layering 6 Combining distribution functions

Varying the shiny_weight argument from 0.1 to 0.9 in increments of 0.1 demonstrates the
range of possible effects that the shiny_red material can produce.

shiny_weight: 0.1 shiny_weight: 0.2 shiny_weight: 0.3

shiny_weight: 0.4 shiny_weight: 0.5 shiny_weight: 0.6

shiny_weight: 0.7 shiny_weight: 0.8 shiny_weight: 0.9

Fig. 6.5 – Visual effect of varying the weight parameter for the glossy reflection

Note that the simplicity of the arithmetic of the BSDF combination doesn’t explain the appar-
ently different substances being rendered—lacquered wood? a metallic finish? It is very hard
to predict the perceptual effect of even simple combinations like this example of weighted lay-
ering, in which a process that seems to entail matters of degree (the weighting of the layers)
become in fact matters of category (the appearance of different substances). More dependable
results require materials based on designs that model light interaction in the world—modeling
made possible in MDL by the combining functions described in this chapter.

© 2021 NVIDIA Corporation MDL Handbook 97

6 Combining distribution functions 6.2 Weighted layering

6.2.1 Simplifying a material’s structure with temporary variables

Not all of the language features in MDL are concerned with describing appearance. Some fea-
tures provide means to structure and organize materials to allow for increasing complexity of
expression. One such feature is the let-expression, a means to simplify larger material definitions
using intermediate calculations.

In simpler material definitions, field values in the material struct can only be of four types:

1. Constant values (for example, a number like 0.55)

2. A value resulting from a constructor (like color(1,0,0))

3. A parameter from the material definition’s signature (like argument shiny_weight in
material shiny_red)

4. Combinations of these first three types

In three of these types, the value to be used is expressed directly, either as a constant or a
constructor. Only the parameters to the material definition can provide names for values used
in the definition of the material.

Listing 6.2

material shiny_red (

float shiny_weight = 0.5) =
Signature with parameters

material (

surface: material_surface (

scattering: df::weighted_layer (

weight: shiny_weight,

layer: df::simple_glossy_bsdf (

tint: color(.15),

roughness_u: .08,

mode: df::scatter_reflect),

base: df::diffuse_reflection_bsdf (

tint: color(0.3, 0.03, 0.05)))));

Material constructor referring to the
parameters contained in the signature

A material designed in this way consists of two fundamental parts: the signature containing
the material parameters, and the material definition containing field values that can refer to
the parameters.

parameters

field values

material

Fig. 6.6 – Field values in the material definition can refer to parameters in the signature

98 MDL Handbook © 2021 NVIDIA Corporation

6.2 Weighted layering 6 Combining distribution functions

In traditional programming languages, complex calculations can be broken up into more man-
ageable pieces by using symbolic names, called variables, to store intermediate values. In MDL,
the same simplifying procedure exists through an optional third section to the material defini-
tion, the let-expression.

 parameters) =
material name (

}

 variables
let {

)

 field values
material (

material

Fig. 6.7 – Temporary variables provide intermediate calculations

The let-expression variables can refer to parameters in the signature, as well as to other variables
that have been previously defined in the let-expression. Field values can then refer to both
these variables as well as the parameters of the material’s signature.

Syntactically, the let-expression follows the equals sign in a material definition, and encloses a
series of variable definitions separated by semicolons:

let {

data-type variable-name = value-of-type ;

...

} in

For example, note that the values of the base and layer fields in the following material, shiny_

red_with_let, are BSDF constructors. Rather than constructing the BSDF in the material struct
itself, the two BSDFs can be defined as let-expression variables of type bsdf, and then used as
the values of the respective fields. Material shiny_red_v1 is the result of using let-expression
variables in material shiny_red:

Listing 6.3

material shiny_red_with_let (

float shiny_weight = 0.5)
Signature with a single parameter

=

© 2021 NVIDIA Corporation MDL Handbook 99

6 Combining distribution functions 6.2 Weighted layering

let {

bsdf shiny_bsdf =

df::simple_glossy_bsdf (

tint: color(.15),

roughness_u: .08,

mode: df::scatter_reflect);

bsdf red_bsdf =

df::diffuse_reflection_bsdf (

tint: color(0.3, .03, 0.05));

} in

Temporary variables defined for use in the
material definition

material (

surface: material_surface (

scattering: df::weighted_layer (

weight: shiny_weight,

layer: shiny_bsdf,

base: red_bsdf)));

Thematerial definition using the “shiny_weight”
input parameter and the two temporary
variables that define BSDFs

These two materials—shiny_red and shiny_red_with_let—produce the same results in a
rendered image. But how the material creates that result has been clarified: two BSDFs are
constructed and then used as the arguments to df::weighted_layering. Better still, the names
of the let-expression variables—shiny_bsdf and red_bsdf—serve to describe the visual intent
of those BSDFs. In this simple example, that intent may be easy to see in the version without
a let-expression. For more complex materials, however, the naming of intermediate variables
can be an important way to find the inevitable errors that complex structures encourage.

6.2.2 Reusing parts of existing materials

The shiny_red and shiny_red_v1 materials use the same BSDF constructors that were shown
at the beginning of the chapter, in the materials red and shiny. Rather than copying an ex-
isting field value of a struct, MDL provides the dot operator (described in “Accessing struct
components with the dot operator” (page 23)) to refer to the fields within any struct, including
the material struct.

The dot operator can be used to extract the BSDFs from materials red and shiny. But unlike
the example in Chapter 2, in which field values were extracted from instances saved as vari-
ables, the following reimplementation of shiny_red extracts BSDFs from instances constructed
directly within the field value:

Listing 6.4

material shiny_red_extract(

float shiny_weight = 0.5)

=

let {

bsdf shiny_bsdf =

shiny().surface.scattering;
Scattering BSDF extracted frommaterial “shiny”

bsdf red_bsdf =

red().surface.scattering;
Scattering BSDF extracted frommaterial “red”

100 MDL Handbook © 2021 NVIDIA Corporation

6.2 Weighted layering 6 Combining distribution functions

} in

material (

surface: material_surface (

scattering: df::weighted_layer (

weight: shiny_weight,

layer: shiny_bsdf, Using the BSDF of “shiny”

base: red_bsdf))); Using the BSDF of “red”

At first glance, it appears that the shiny and red materials have been created only to be
taken apart. However, in developing complex materials, being able to visualize components—
because they are renderable as complete materials in themselves—can greatly simplify the
design and debugging process. But also note that it is not necessary for the original MDL code
to be available for those materials—indeed, for the user of those materials to even know how
they are defined—to be reused for the BSDFs that they contain.

6.2.3 Parameterizing a layered material

The shiny_red material is limited in its design, only allowing the weight of the layering pro-
cess to be controlled through its shiny_weight parameter. Adding more control over a mate-
rial’s behavior by adding additional parameters is called parameterization.

To create a more flexible material based on shiny_red, the two materials that provide the
BSDFs need first to be parameterized. Material diffuse is produced by making the tint argu-
ment of df::diffuse_reflection_bsdf a parameter:

Listing 6.5

material diffuse (

color tint = color(0.5)) Parameter “tint” for the diffuse reflection color

=

material (

surface: material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: tint))); Using the “tint” parameter

Similarly, the tint and roughness arguments to df::simple_glossy_bsdf are defined to be
parameters to create material glossy:

Listing 6.6

material glossy (

color tint = color(0.5), Parameter “tint” for the glossy reflection color

float roughness = .1) Parameter “roughness” for the degree of glossy reflection

=

material (

© 2021 NVIDIA Corporation MDL Handbook 101

6 Combining distribution functions 6.2 Weighted layering

surface: material_surface (

scattering:

df::simple_glossy_bsdf (

tint: tint, Using the “tint” parameter

roughness_u: roughness, Using the “roughness” parameter

mode: df::scatter_reflect)));

Now that the materials used as components to shiny_red have been parameterized, a param-
eterized version of shiny_red_with_let (using the dot operator to extract BSDFs) can also be
created, here called glossy_over_diffuse.

Listing 6.7

material glossy_over_diffuse(

color glossy_tint = color(0.1),

float glossy_roughness = 0.1,

float glossy_weight = 0.5,

Glossy parameters

color diffuse_tint = color(0.5)) Diffuse parameter

=

let {

bsdf glossy_bsdf = glossy(

tint: glossy_tint,

roughness: glossy_roughness

).surface.scattering;

Glossy BSDF value extracted from “glossy” material
created here

bsdf diffuse_bsdf = diffuse(

tint: diffuse_tint

).surface.scattering;

Diffuse BSDF value extracted from “diffuse” material
created here

} in

material (

surface: material_surface (

scattering: df::weighted_layer (

weight: glossy_weight,

layer: glossy_bsdf,

base: diffuse_bsdf)));

Layering

Now that shiny_red has been parameterized to produce glossy_over_diffuse, the visual
possibilities of this simple layering material can be explored. For example, the glossy_over_

diffuse parameter values of Figure 6.8 (page 103) create an object that looks like blue porcelain
(rather than lacquered and painted wood):

102 MDL Handbook © 2021 NVIDIA Corporation

6.2 Weighted layering 6 Combining distribution functions

Fig. 6.8 – Varying the parameters of material glossy_over_diffuse

glossy_over_diffuse(

glossy_tint:

color(0.1, 0.1, 0.08),

glossy_roughness: 0.2,

diffuse_tint:

color(0.7, 0.8, 0.9))

Using material glossy_over_diffuse—generalized through parameterization—material shiny_

red can be redefined as a special case of glossy_over_diffuse:

Listing 6.8

material shiny_red_specialized()

=

glossy_over_diffuse (

glossy_tint: color(0.15),

glossy_roughness: 0.08,

diffuse_tint: color(0.3, 0.03, 0.05));

Recall from Chapter 3 that whitespace—the space, tab and newline characters—are ignored in
MDL. At first glance, the definition of shiny_red_v3 may appear to be different in structure
than the previous material definitions, but this change in format emphasizes that the syntax
for all material definitions corresponds to the variable declaration syntax described in “The
structure of a material” (page 17).

data-type variable-name = variable-value ;

Similarly, the blue ceramic effect can be defined as a new material called “light_blue_ceramic”
by also using glossy_over_diffuse.

© 2021 NVIDIA Corporation MDL Handbook 103

6 Combining distribution functions 6.3 Layering based on the viewing angle

Listing 6.9

material light_blue_ceramic()

=

glossy_over_diffuse (

glossy_tint: color(0.1, 0.1, 0.08),

glossy_roughness: 0.2,

diffuse_tint: color(0.7, 0.8, 0.9));

The definitions of shiny_red_v3 and light_blue_ceramic do not have any parameters; a
user of those definitions cannot change the internal parameter values of glossy_over_diffuse

from which these materials are derived. Controlling access to internal state in this manner is
called encapsulation—the parameters of an existing material have been hidden (encapsulated)
in the creation of a new material.

When creating a new material from an existing material, it may be useful to include a subset of
the parameters, a technique called partial encapsulation. For example, this material partially en-
capsulates glossy_over_diffuse, only allowing the diffuse_tint parameter to be modified
in the new material:

Listing 6.10

material shiny_tint(

color tint = color(1)) Parameterizing the diffuse color as “tint”

=

glossy_over_diffuse(

glossy_tint: color(0.15),

glossy_roughness: 0.08,

diffuse_tint: tint); Using the “tint” parameter

Partial encapsulations allows complex, highly parameterized materials to serve as the basis of a
family of materials, each particularizing the original material for its own purpose. In a produc-
tion context, a single material may created to implement a complex optical effect—anodized
aluminum, car paint with metal flakes and a clear coat, boomerang Formica. Designers are pro-
vided with a set of materials that partially encapsulate this complex material, allowing them
control over a limited set of the underlying parameters. In an application’s graphical user inter-
faces, a partially encapsulated material presents the user with a simplified interface, allowing
modification of only those aspects of the material that the design should allow.

Section 5 of this chapter develops a complex material and then demonstrates this process of
partial encapsulation and the way in which it simplifies the user interface to the material.

6.3 Layering based on the viewing angle

The df::weighted_layer function combines the base and layer BSDFs in the same way over
the surface of the object, controlled by the weighting factor. In contrast, the df::fresnel_layer

is directionally dependent; it includes the viewing angle at each point on the rendered surface in
its calculation.

104 MDL Handbook © 2021 NVIDIA Corporation

6.3 Layering based on the viewing angle 6 Combining distribution functions

6.3.1 Background: The refractive index

The directional dependency of df::fresnel_layer is based on the Fresnel equations, named
after Augustin-Jean Fresnel, who derived them in 1823. These equations describe reflection
and refraction of light when it strikes a boundary between two transparent media, like air and
glass.

When a light strikes such a boundary, the light is typically both reflected and refracted. The
proportion of reflection to refraction is determined by two factors: the refractive index of both
media and the angle at which the light strikes the boundary (the incident angle). The higher the
ratio of the two refractive indices the more light is bent when it crosses the boundary.

Substance Refractive index

Vacuum 1.0 (by definition)

Air 1.00029

Ice 1.31

Water at 20◦ Celsius 1.33

Ethyl alcohol 1.36

Fused quartz 1.46

Glycerine 1.473

Acrylic glass 1.490-1.492

Crown (optical) glass 1.52-1.62

Polystyrene 1.55-1.59

Emerald 1.565-1.602

Topaz 1.609-1.643

Sapphire 1.77

Diamond 2.417

Silicon 3.678

Various substances and their refractive indices

Traditionally, computer graphics systems have made the simplifying assumption that objects
exist in a vacuum, so that only the refractive index of the object matters (since a number is
unchanged by dividing by 1.0). The refractive index of air is close enough to 1.0 so that it, too,
can safely be ignored. However, the ratio of the refractive indices of an ice cube in water is very
close to 1.0, so that the light direction is changed very little (making ice in water harder to see
than glass in air).

The Fresnel equations also define the proportion of light that is reflected and refracted at a
boundary. In an idealized object (with no absorption or emission), the sum of the reflected and
refracted light will equal the incoming light. Both the ratio of refractive indices and the incident
angle determine the amount of light that is reflected and the amount that is refracted. The
greater the refractive index ratio, the more light will be reflected from the boundary, rather than
refracted through it. In addition, the smaller the incident angle, the more light will be reflected.
As the angle between the light direction and the surface (the grazing angle) approaches zero,

© 2021 NVIDIA Corporation MDL Handbook 105

6 Combining distribution functions 6.3 Layering based on the viewing angle

the surface becomes increasingly reflective. At the theoretical limit—when the grazing angle is
zero—the surface is only reflective, with no refraction across the boundary.

For example, in this diagram of the reflective and refractive properties of a sphere of optical
glass, the length of the two arrows at each incident point represent the relative proportions of
reflection and refraction. Very little light is reflected when the light strikes the surface directly
(a grazing angle close to 90◦). Much more light is reflected when the grazing angle is close to
zero (at the top and bottom of the sphere).

Fig. 6.9 – Reflection and refraction of optical glass in a vacuum, refractive index ratio of 1.52

The same increase in reflection at small grazing angles can be seen in this diagram of a sphere
made of diamond. But the higher refractive index ratio causes an increase in reflection for all
light directions.

Fig. 6.10 – Reflection and refraction of diamond in a vacuum, refractive index ratio of 2.417

The diagram of diamond shows, in comparison to the diagram of glass, why diamonds sparkle—
the surface reflects light at any angle. The Fresnel equations quantify this amount: 17% of the
light striking a diamond surface is reflected when the light direction is straight on (when it
forms a 90◦ angle with the surface), but only 4% of the incoming light is reflected by glass at
that angle. The facets of a cut diamond make use of this property, providing many surfaces at
different angles to increase the chance of reflections reaching the eye of the beholder.

106 MDL Handbook © 2021 NVIDIA Corporation

6.3 Layering based on the viewing angle 6 Combining distribution functions

6.3.2 Fresnel layering in a material

The Fresnel equations define light interaction at a boundary: a relationship between refractive
indices, angle of light incidence, and the resulting proportion of reflected and transmitted light.
But the thin coating of a transparent substance like varnish provides little distance for the
change of light direction of the transmitted light—its refraction—to have much of an effect.

MDL models the small influence of refraction in a thin layer with the df::fresnel_layer func-
tion. The Fresnel calculation of the fractional amount of reflection is used to scale the contribu-
tion of the BSDF value supplied as the value of the layer argument to df::fresnel_layer. To
the scaled layer value is added the value of the base BSDF, scaled by the complement of the
reflection factor:

(layer * Fresnel-reflection-factor) + (base * (1.0 - Fresnel-reflection-factor))

The change of direction from refraction is ignored, so the same point on the surface is used for
the evaluation of both the layer and base BSDFs.

The df::fresnel_layer function is similar in structure to df::weighted_layer, but adds
an index of refraction parameter, abbreviated “ior,” to the three parameters in df::weighted_

layer:

df::fresnel_layer (

ior: index-of-refraction-of-layer
weight: layer-fraction,

layer: BSDF,

base: BSDF)

Based on the Fresnel equations, the ior parameter controls how much the light the layer

parameter’s BSDF reflects, with the incident angle defined by the view from the renderer’s
virtual camera.

The following two BSDFs will be combined by df::fresnel_layer in Figure 6.13 (page 109)
at different ior values:

Figure 6.11

material diffuse (

color tint = color(0.5))

=

material (

surface: material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: tint)));

© 2021 NVIDIA Corporation MDL Handbook 107

6 Combining distribution functions 6.3 Layering based on the viewing angle

Figure 6.12

material glossy (

color tint = color(0.5),

float roughness = .1)

=

material (

surface: material_surface (

scattering:

df::simple_glossy_bsdf (

tint: tint,

roughness_u: roughness,

mode: df::scatter_reflect)));

Two temporary variables in the let-expression define the glossy BSDF used as a layer and the
diffuse BSDF for the base:

Listing 6.11

material fresnel_glossy_over_diffuse(

float glossy_roughness = 0.1,

color diffuse_tint = color(0.5),

color ior = color(1.3)) Index of refraction parameter

=

let {

bsdf glossy_bsdf = glossy(

tint: color(0.7),

roughness: glossy_roughness).surface.scattering;

Glossy layer: the BSDF
from the “glossy” material

bsdf diffuse_bsdf = diffuse(

tint: diffuse_tint).surface.scattering;
Diffuse layer: the BSDF from the
“diffuse” material

} in

material (

surface: material_surface (

scattering: df::fresnel_layer (Fresnel layering

ior: ior, Index of refraction to control glossy layer

weight: 1.0,

layer: glossy_bsdf, Layer affected by the index of refraction layer

base: diffuse_bsdf)));

108 MDL Handbook © 2021 NVIDIA Corporation

6.3 Layering based on the viewing angle 6 Combining distribution functions

Rendering a series of images with an increasing ior value shows the increasing amount of
reflection of the glossy layer. For an ior value of 1.0, there is no reflection at all. As the ior

value increases, more and more of the surface becomes increasingly reflective, showing the
influence of the glossy layer.

ior 1.0 ior 1.3 ior 1.6

ior 1.9 ior 2.2 ior 2.5

ior 2.8 ior 3.1 ior 3.4

Fig. 6.13 – Varying the index of refraction of the glossy layer

Though the df::fresnel_layer ignores the refraction component, the reflection values are
consistent with the the Fresnel equations. In a later section, the df::fresnel_layer is added
as the last layer in a combination of several materials, simulating in a physically based way a
clear, protective coating.

© 2021 NVIDIA Corporation MDL Handbook 109

6 Combining distribution functions 6.4 Mixing functions

6.4 Mixing functions

The layering functions define how two BSDFs should be combined with a clear spatial relationship—
a layer over a base. In MDL’s mixing functions, a set of BSDFs are combined in an additive way,
like mixing paint. Each component of the mix only defines the contribution of its BSDFs using
a weighting factor, a value of type float greater than or equal to 0.0.

Because any number of components can be combined in a mixing function and all components
can have an arbitrary weighting factor, the two mixing functions are characterized by how they
handle a set of components with a sum of weighting factors that exceeds 1.0.

Mixing function Modification if weighting factors sum to greater than 1.0

normalized_mix All weighting factors are scaled proportionally so that their sum
is 1.0 before mixing begins.

clamped_mix Components are summed in order until the sum of the weighting
factors is greater than 1.0. The weighting factor of the final
component that caused the sum to exceed 1.0 is reduced so that
the sum is now 1.0. That final component with its reduced weight
factor is then used in the mix. All further components are
ignored.

The two mixing functions

A picture can clarify the different behavior of the two mixing functions when the sum of
their components exceeds 1.0: normalizing retains all the components, but at a different scale;
clamping maintains the scale of the components, but does not retain them all.

0.0

1.0

df::normalized_mix

0.0

1.0

The normalized mix rescales the values
to fit between 0.0 and 1.0

0.0

1.0

df::clamped_mix

0.0

1.0

The clamped mix retains the original values
but removes the portion above 1.0

Fig. 6.14 – Modifying the sum of mixing components when the sum is greater than 1.0

6.4.1 The syntax of mixing functions

Each component of a mixing function is defined by a struct of two fields: its weight and BSDF.

df::bsdf_component (

weight: fraction-for-component,
component: BSDF-instance)

110 MDL Handbook © 2021 NVIDIA Corporation

6.4 Mixing functions 6 Combining distribution functions

For example, this df::bsdf_component constructor call creates a diffuse reflection component
with a weight of 50

df::bsdf_component (

weight: 0.5,

component: df::diffuse_reflection_bsdf (

tint: color(0,0,1)))

The components are collected in an MDL array. An array is an ordered sequence of values of
the same data type. A pair of square brackets following a data type defines an array of that
type. The constructor function for the array lists the components of the array within parenthe-
ses, separated by commas.

array-element-type[] (

array-element-1,

array-element-2,

...

array-element-n)

In the two mixing functions, the value of the components field is an array of type df::bsdf_

component[] as in this example of normalized_mix:

normalized_mix (

components:

df::bsdf_component[] (

component-1,

component-2,

...

component-n))

For example, this function call of normalized mix combines three diffuse reflection BSDF com-
ponents:

Listing 6.12

normalized_mix (

components:

df::bsdf_component[] (

df::bsdf_component (

weight: 0.3,

component: df::diffuse_reflection_bsdf (

tint: color(1,0,0))),

Component 1

df::bsdf_component (

weight: 0.2,

component: df::diffuse_reflection_bsdf (

tint: color(0,1,0))),

Component 2

df::bsdf_component (

weight: 0.5,

component: df::diffuse_reflection_bsdf (

tint: color(0,0,1)))))

Component 3

© 2021 NVIDIA Corporation MDL Handbook 111

6 Combining distribution functions 6.4 Mixing functions

Like the layering functions, the normalized_mix and clamped_mix functions return BSDFs and
can therefore be used wherever a BSDF value is required—even as a component in a layering
function or in another set of BSDFs combined in a mixing function. An illustration of com-
binatorial possibilities is provided in the last section of this chapter, where five BSDFs are
combined.

6.4.2 Mixing glossy reflections

Chapter 1 described the various types of reflection and transmission at a surface. The shape
of the curve that describes relative reflective intensities for glossy reflection from a surface is
often described as a “lobe.”

Fig. 6.15 – Characterizing glossy reflection as a “lobe”

As an example of mixing, the material presented below, two_glossy_lobes, combines two
different types of glossy reflections, with color and roughness for both glossy reflections and
their relative weight defined by parameters to the material.

Listing 6.13

material two_glossy_lobes (

float roughness_1 = 0.1,

float weight_1 = 0.5,

color tint_1 = color(0.7),
Parameters for first lobe

float roughness_2 = .5,

float weight_2 = 0.5,

color tint_2 = color(0.7))
Parameters for second lobe

=

material (

surface: material_surface (

scattering: df::clamped_mix (

components: df::bsdf_component[] (
Array constructor for
“df::bsdf_component”

df::bsdf_component(

weight: weight_1,

component: df::simple_glossy_bsdf (

tint: tint_1,

roughness_u: roughness_1)),

Component one

112 MDL Handbook © 2021 NVIDIA Corporation

6.4 Mixing functions 6 Combining distribution functions

df::bsdf_component(

weight: weight_2,

component: df::simple_glossy_bsdf (

tint: tint_2,

roughness_u: roughness_2))))));

Component two

To demonstrate the effect of mixing two glossy reflections, these parameter values will be used
in two_glossy_lobes:

Parameter Component 1 Component 2

tint color(0.2, 0.3, 0.25) color(0.6, 0.4, 0.2)

roughness 0.3 0.6

By setting the weight of one component to 1.0 and the other to 0.0, the individual contribution
of both components can be displayed. First, the effect of the first component alone:

Figure 6.16

two_glossy_lobes(

weight_1: 1.0,

tint_1:

color(0.2, 0.3, 0.25),

roughness_1: 0.3,

weight_2: 0.0,

tint_2:

color(0.6, 0.4, 0.2),

roughness_2: 0.6)

Using only the second component in rendering the objects with two_glossy_lobes produces
Figure 6.17:

Figure 6.17

two_glossy_lobes(

weight_1: 0.0,

tint_1:

color(0.2, 0.3, 0.25),

roughness_1: 0.3,

weight_2: 1.0,

tint_2:

color(0.6, 0.4, 0.2),

roughness_2: 0.6)

© 2021 NVIDIA Corporation MDL Handbook 113

6 Combining distribution functions 6.4 Mixing functions

The effect of the combination of these two glossy reflections can be shown by systematically
varying the relative weights between the two glossy reflection components.

mixing weights: 0.1 and 0.9 mixing weights: 0.2 and 0.8 mixing weights: 0.3 and 0.7

mixing weights: 0.4 and 0.6 mixing weights: 0.5 and 0.5 mixing weights: 0.6 and 0.4

mixing weights: 0.7 and 0.3 mixing weights: 0.8 and 0.2 mixing weights: 0.9 and 0.1

Fig. 6.18 – Varying the relative weights of two glossy reflection components

Controlling the weights of components in a combining function not only provides greater de-
sign control over the effect of the material, it also allows—as in the examples above—a way of
checking that the individual components are behaving as expected.

6.4.3 An approximation of metal

In the fresnel_glossy layering function, the reflective component of the Fresnel equations
provides a sense of physical plausibility in the appearance of the resulting image. The design
of a successful material may not use actual formulas from physics and yet still base its de-
sign on physical principles that provide a higher degree of visual “realism” than are possible
in strategies that ignore physics completely. For example, the color of reflection from metals
varies based on viewing angle, so that in reality, the reflections from silver aren’t simply gray,
nor is copper simply brown or gold only yellow.

114 MDL Handbook © 2021 NVIDIA Corporation

6.4 Mixing functions 6 Combining distribution functions

First, the visually obvious yellow hue of the sharper highlights of the gold reflection, here
made visible as in the previous section by setting its component value to 1.0, and the other
component to 0.0:

Figure 6.19

two_glossy_lobes(

weight_1: 0.0,

tint_1:

color(0.3, 0.15, 0),

roughness_1: 0.6,

weight_2: 1.0,

tint_2:

color(0.5, 0.4, 0.1),

roughness_2: 0.3)

The other glossy reflection is a darker, orange color, with a greater degree of roughness so that
it is visible outside the areas of greatest reflection of the yellow component.

Figure 6.20

two_glossy_lobes(

weight_1: 1.0,

tint_1:

color(0.3, 0.15, 0),

roughness_1: 0.6,

weight_2: 0.0,

tint_2:

color(0.5, 0.4, 0.1),

roughness_2: 0.3)

Mixing the yellow and orange components artistically approximates the complex color behav-
ior of gold reflections:

© 2021 NVIDIA Corporation MDL Handbook 115

6 Combining distribution functions 6.5 Multiple layers

Figure 6.21

two_glossy_lobes(

weight_1: 0.5,

tint_1:

color(0.3, 0.15, 0),

roughness_1: 0.6,

weight_2: 0.5,

tint_2:

color(0.5, 0.4, 0.1),

roughness_2: 0.3)

By varying the color and roughness of yellow and orange, an artistic simulation of the complex
reflective color of gold becomes not just possible, but, with the parameters of two_glossy_

lobes, easily fine-tuned for artistic purposes. In this example, the solution to the problem of
metallic reflection is not so much physically based, as physically inspired.

6.5 Multiple layers

In all the previous examples of this chapter, only two BSDFs were combined, either layered or
mixed together in various ways. Because the result of the layering and mixing functions is a
value of type BSDF, that result can be used as input to yet another combining function. In this
way, layer and mixing can be used to create arbitrarily complex aggregations of simple and
compound BSDFs.

For example, the output of weighted_layer can serve as the layer or base of another call to
the weighted_layer function:

Fig. 6.22 – Nesting layering functions

116 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

The nesting of the layering function is also clear from the resulting syntactic structure when
the result of weighted_layer is used as the value of the layer parameter to another call to
weighted_layer (here made more visible by the symbolic representation of the BSDFs as let-
ters A to E):

Fig. 6.23 – The vertical relationship of layers
is implied by the nesting of distribution

functions

weighted_layer (

weight: w4,

weighted_layer (

weight: w3,

weighted_layer (

weight: w2,

weighted_layer (

weight: w1,

layer: A,

base: B),

base: C),

base: D),

base: E)

The syntactic similarity of the combining functions to the constructor of the material struct
could obscure other ways of thinking about the relationship of these function calls. Traditional
programming languages might favor a more horizontal layout:

function(w4, function(w3, function(w2, function(w1, A, B), C), D), E)

As the number of combinations of BSDFs increases, part of the material designer’s task is to
manage this complexity in the way that the materials are organized. The next two sections
show two of the simpler organizational principles for building more complex materials.

6.5.1 A linear series of layered materials

To demonstrate a series of layering functions, the following four materials are defined:

1. Diffuse green reflection as base color

2. A dull glossy blue (a glossy with a “wide” lobe)

3. A shiny glossy blue (a glossy with a “narrow” lobe)

4. A mirror reflection for a “clear coat” effect

To simplify the material definitions as well as provide consistency when the same color is
desired, three const variables of type color are defined:

const color white = color(0.7);

const color blue = color(0.2, 0.3, 0.7);

const color green = color(0.1, 0.3, 0.05);

No parameters are defined in all four of the following materials; the values to be used in lay-
ering are explicitly provided as arguments to the BSDF itself.

© 2021 NVIDIA Corporation MDL Handbook 117

6 Combining distribution functions 6.5 Multiple layers

Fig. 6.24 – Material 1: Diffuse green reflection as base color

material diffuse_green_base()

= material (

surface: material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: green)));

Fig. 6.25 – Material 2: A dull glossy blue (a glossy with a “wide” lobe)

material wide_blue_glossy()

= material (

surface: material_surface (

scattering:

df::simple_glossy_bsdf (

tint: blue,

roughness_u: 0.5)));

118 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

Fig. 6.26 – Material 3: A shiny glossy blue (a glossy with a “narrow” lobe)

material narrow_blue_glossy()

= material (

surface: material_surface (

scattering:

df::simple_glossy_bsdf (

tint: blue,

roughness_u: 0.2)));

Fig. 6.27 – Material 4: A mirror reflection for a “clear coat” effect

material mirror()

= material (

surface: material_surface (

scattering:

df::specular_bsdf (

tint: white,

mode:

df::scatter_reflect)));

© 2021 NVIDIA Corporation MDL Handbook 119

6 Combining distribution functions 6.5 Multiple layers

fresnel_layer

four_layers

weighted_layer

three_layers

custom_curve_layer

two_layers

In this depiction of BSDF combination,
the vertical order of the rendered
components suggests different ways of
thinking about the process: a thin
mirror-like coating over sharp blue
highlights, over glossy blue on a base
layer of diffuse green. On the other hand,
a painter may think in the other
direction, with a base layer of matte
green, over which blue washes with
different degrees of glossiness, finished
by a clear-coat layer of varnish.

120 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

The first combination layers the wide blue glossy BSDF over the diffuse green base in material
two_layers:

Figure 6.28

material two_layers () =

combinations::two_glossy_lobes(

weight_1: 0.5,

tint_1: orange,

roughness_1: 0.6,

weight_2: 0.5,

tint_2: yellow,

roughness_2: 0.3);

The combination of the first two BSDFs in two_layers is used as the base value, extracted by
the dot operator to create the temporary variable base in the let expression of material three_

layers:

Figure 6.29

material three_layers ()

= let {

bsdf layer =

two_layers ()

.surface.scattering;

bsdf base =

diffuse_green_base()

.surface.scattering;

} in

material (

surface: material_surface(

scattering:

df::custom_curve_layer(

normal_reflectivity: 0,

grazing_reflectivity: 1.0,

exponent: 0.5,

weight: 1,

layer: layer,

base: base)));

© 2021 NVIDIA Corporation MDL Handbook 121

6 Combining distribution functions 6.5 Multiple layers

Finally, a mirror-like layer is combined over the BSDF extracted in the let from material three_

layers:

Figure 6.30

material four_layers ()

= let {

bsdf layer =

narrow_blue_glossy()

.surface.scattering;

bsdf base =

three_layers ()

.surface.scattering;

} in

material (

surface: material_surface(

scattering:

df::weighted_layer(

weight: 0.3,

layer: layer,

base: base)));

6.5.2 Using combinedmaterials as layers

To combine mixing and layering, the result of the mixing function within two_glossy_lobes

will be used as a layer argument to df::custom_curve_layer.

As before, the tint parameter values for the components of two_glossy_lobes are defined for
clarity as const variables of type color:

const color orange = color(0.3, 0.15, 0.0);

const color yellow = color(0.5, 0.4, 0.1);

Adjusting the weights of two_glossy_lobes to display the orange layer alone produces Figure
6.31 (page 123):

122 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

Figure 6.31

two_glossy_lobes(

weight_1: 1,

tint_1:

color(orange),

roughness_1: 0.6,

weight_2: 0,

tint_2:

color(yellow),

roughness_2: 0.3)

Adjusting the weights to display the yellow layer alone produces Figure 6.32:

Figure 6.32

two_glossy_lobes(

weight_1: 0,

tint_1:

color(orange),

roughness_1: 0.6,

weight_2: 1,

tint_2:

color(yellow),

roughness_2: 0.3)

© 2021 NVIDIA Corporation MDL Handbook 123

6 Combining distribution functions 6.5 Multiple layers

fresnel_layer

five_layers

weighted_layer

four_layers_v1

clamped_mix

two_layers_v1

custom_curve_layer

three_layers_v1

The orange and yellow components are
combined and used for the layer parameter
of custom_curve_layer, with the diffuse
green component as a base. The other two
components from the previous example are
layered above as before.

124 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

The orange and yellow glossy reflections are combined in two_glossy_lobes:

Figure 6.33

material two_layers () =

combinations::two_glossy_lobes(

weight_1: 0.5,

tint_1: orange,

roughness_1: 0.6,

weight_2: 0.5,

tint_2: yellow,

roughness_2: 0.3);

The BSDF of two_glossy_lobes is used as a layer over the diffuse green BSDF, which is used
as a base:

Figure 6.34

material three_layers ()

= let {

bsdf layer =

two_layers ()

.surface.scattering;

bsdf base =

diffuse_green_base()

.surface.scattering;

} in

material (

surface: material_surface(

scattering:

df::custom_curve_layer(

normal_reflectivity: 0,

grazing_reflectivity: 1.0,

exponent: 0.5,

weight: 1,

layer: layer,

base: base)));

© 2021 NVIDIA Corporation MDL Handbook 125

6 Combining distribution functions 6.5 Multiple layers

The BSDF of narrow_blue_glossy is used as a layer over the BSDF of three_layers:

Figure 6.35

material four_layers ()

= let {

bsdf layer =

narrow_blue_glossy()

.surface.scattering;

bsdf base =

three_layers ()

.surface.scattering;

} in

material (

surface: material_surface(

scattering:

df::weighted_layer(

weight: 0.3,

layer: layer,

base: base)));

Finally, the combination of the four components is the base for BSDF of mirror used as the
uppermost layer in Figure 6.36:

Figure 6.36

material five_layers()

= let {

bsdf layer =

mirror()

.surface.scattering;

bsdf base =

four_layers ()

.surface.scattering;

} in

material (

surface: material_surface(

scattering:

df::fresnel_layer(

ior: color(1.6),

weight: 1.0,

layer: layer,

base: base)));

126 MDL Handbook © 2021 NVIDIA Corporation

6.5 Multiple layers 6 Combining distribution functions

Creating separate materials for each incremental combination of the separate BSDFs is very
helpful in designing complex materials. Once the basic structure of a complex material has
been designed in this manner, further refinements can be made, including the selection of
internal parameter values that should be exposed in the signature of the top-level material.

Fig. 6.37 – Beneath a layer, another layer.

© 2021 NVIDIA Corporation MDL Handbook 127

6 Combining distribution functions 6.5 Multiple layers

128 MDL Handbook © 2021 NVIDIA Corporation

7 Plastic
In the past decade, we have witnessed the development of a number of
systems for the rendering of solid objects by computer. The two principal
problems encountered in the design of these systems are the elimination of the
hidden parts and the shading of the objects. Until now, most effort has been
spent in the search for fast hidden surface removal algorithms. With the
development of these algorithms, the programs that produce pictures are
becoming remarkably fast, and we may now turn to the search for algorithms
to enhance the quality of these pictures.

In trying to improve the quality of the synthetic images, we do not expect
to be able to display the object exactly as it would appear in reality, with
texture, overcast shadows, etc. We hope only to display an image that
approximates the real object closely enough to provide a certain degree of
realism. This involves some understanding of the fundamental properties of
the human visual system. Unlike a photograph of a real world scene, a
computer generated shaded picture is made from a numerical model, which is
stored in the computer as an objective description. When an image is then
generated from this model, the human visual system makes the final
subjective analysis. Obtaining a close image correspondence to the eye’s
subjective interpretation of the real object is then the goal. The computer
system can be compared to an artist who paints an object from its description
and not from direct observation of the object. But unlike the artist, who can
correct the painting if it does not look right to him, the computer that
generates the picture does not receive feedback about the quality of the
synthetic images, because the human visual system is the final receptor.

Bui Tuong Phong, “Illumination for Computer Generated Pictures,6” Communications of the

ACM, Volume 18, Number 6, June, 1975.

MDL represents a change of paradigm that requires a reevaluation of many traditional com-
puter graphics ideas, and suggests a return to first principles. One of the venerable lighting
models that came to define the “plastic” appearance of early computer-generated imagery
was published by Bui Tuong Phong in 1975. This chapter considers the assumptions made by
Phong in the development of his lighting model and how they correspond to the simulation of
plastic in MDL.

7.1 Background: The Phongmodel

In his landmark paper of 1975, Bui Tuong Phong made two fundamental contributions to “the
rendering of solid objects by computer.” The first was an improved shading function, defined
by Phong in the paper as

a function which yields the intensity value of each point on the body of an
object from the characteristics of the light source, the object, and the position of
the viewer. (Bui Tuong Phong, ibid.)

6. http://dl.acm.org/citation.cfm?id=360839&CFID=597616054

© 2021 NVIDIA Corporation MDL Handbook 129

http://dl.acm.org/citation.cfm?id=360839&CFID=597616054

7 Plastic 7.1 Background: The Phongmodel

At that time, the typical shading function depended upon the weighted average of the color
calculated at the vertices of a polygon, a method published by Henri Gouraud in 1971 and
called Gouraud shading. Instead of averaging the colors at vertices, Phong’s technique averaged
the normal vectors at the vertices of the polygon to calculate the average normal vector of the
point to be shaded. Phong shading, as this method is now called, produced much better results
for “transparency and highlight effects,” as shown in this illustration from Phong’s 1975 paper:

Fig. 7.1 – Bui Tuong Phong,“Illumination for Computer Generated Pictures,” 1975

The second contribution of Phong’s paper was a method of adding “specular highlights” to the
calculation of diffuse reflection. These brighter areas of a rendered object simulate the blurred
reflections of light sources modeled as geometric points in space. (Later illumination models,
including the model implemented by MDL, reserve the term “specular” for perfect mirror
reflections and instead call blurred reflections due to surface roughness “glossy.” See “Specular
interaction at a surface” (page 45) and and “Glossy interaction” (page 52) for a description of
specular and glossy components in MDL.)

Here is Phong’s formula from the original paper:

Sp = Cp[cos(i)(1 − d) + d] + W(i)[cos(s)]n

where (quoting from the paper):

Cp is the reflection coefficient of the object at point P for a certain wavelength.

i is the incident angle.

d is the environmental diffuse reflection coefficient.

W(i) is a function which gives the ratio of the specular reflected light and the incident
light as a function of the incident angle i.

s is the angle between the direction of the reflected light and the line of sight.

n is a power which models the specular reflected light for each material.

130 MDL Handbook © 2021 NVIDIA Corporation

7.2 The Phongmodel and MDL 7 Plastic

The terms of Phong’s equation can be grouped into five categories that define the diffuse and
specular components.

Cp [cos(s)] ncos(i)(1 - d) + d[] + W(i)

diffuse specular

color direct ambient intensity spread

Fig. 7.2 – Categorizing the terms of the Phong equation

The term d, the “environmental diffuse reflection coefficient” is a directionally independent
scalar value and not a color. Early commercial rendering applications typically called this value
the “ambient light”—the light that is present because of environment interreflections—and im-
plemented it as a color value. In Phong’s equation, d only increases the intensity of the object’s
color without regard to the incident angle i, simulating a base level of light striking all surfaces.

A second interesting feature of this equation is that the specular component is a scalar value,
and, like the environmental term d, is not a color. Adding this scalar value was typically imple-
mented in early rendering systems as a scaling factor of the incoming light color. Coinciden-
tally, highlights that duplicate the color of the light source on a diffuse reflective surface sim-
ulate the visual appearance of plastic. Perhaps the unintended look of plastic due to the scalar
specular term of the Phong equation helped contribute to the early criticism of computer-
generated imagery as cheap and inauthentic.

7.2 The Phongmodel and MDL

The Phong model makes several assumptions about light-surface interaction that provide a
strong contrast with the physically based approach of MDL.

Direct illumination only
The diffuse and specular terms of the Phong equation are calculated as the surface in-
teraction of a source of light, typically modeled as a geometric point without area. Only
the direct contribution of the light from the light objects is considered in calculating
the diffuse and specular terms. To provide for light reflected from other surfaces, the
Phong model adds a constant value—the “environmental diffuse reflection” term d in
the Phong equation—that represents perfect diffuse reflection. This term d approximates
light reflected from other surfaces as an increase that is constant throughout the scene.
This constant value is simply added to the calculation based on the light objects. The
interreflections between two objects that are spatially close to each other are not repre-
sented by the approximation.

Light objects and the light loop
To calculate the effect of all light objects in the scene, the Phong model assumes an iter-
ation through them to accumulate their individual contributions to the shading of the
surface point being rendered. This iteration is often called the light loop. MDL does not
define a special type of object that emits light nor does it provide a language stucture for
iterating through a set of such light objects. Instead, a surface can emit light, defined as
a property in the material struct (page 40) that is similar in its MDL representation to the
properties of reflection and transmission. Distribution functions in the material proper-
ties provide a single mechanism for all light interaction, eliminating both the explicit

© 2021 NVIDIA Corporation MDL Handbook 131

7 Plastic 7.3 A Phong-like plastic model

accumulation of light object contributions and the need for a compensating approxima-
tion of light from other surfaces.

Highlights as the only reflections
The “specular” component in the Phong model is a scalar value that is added to the
diffuse color calculation for each light object. As a scalar value, the specular component
can only serve to brighten the diffuse color, simulating an additional white light striking
that surface point. Though this appears as a reflection of a light source on the surface of
the object, no other objects in the scene are reflected.

The final term in the Phong equation, a cosine function raised to a power, controls the
spatial area over which the highlight is distributed. The exponential term n, often called
the “Phong exponent” in rendering applications, affects the degree to which the light is
spread across the surface. Because the blurriness of a reflection can be due to the rough-
ness of the surface, the Phong exponent value is often available in the user interface as
a means of artistic control of the surface’s apparent roughness.

Empirical derivation of a non-physically based formula
In the paper, Phong describes the calculation of the specular component of the model:

The function W(i) and the power n express the specular reflection characteristics of a
material. For a highly reflective material, the values of both W(i) and n are large. The
range of W(i) is between 10 and 80 percent, and n varies from 1 to 10. These numbers
are empirically adjusted for the picture, and no physical justifications are made.

(Bui Tuong Phong, ibid.)

As the parameters of the Phong equation are adjusted, the amount of reflected light at
a point can easily be made greater than the total amount of light striking that point. For
rendering systems that only calculate direct illumination, arbitrary adjustments made
to the reflection parameters of individual objects have no effect on the light received by
other objects. (It is in this sense that direct illumination is also called “local illumina-
tion.”) However, in rendering systems that are based on the physics of light interaction
between objects, an object that reflects more light than it receives is adding light energy
to the scene, violating the physical principle of energy conservation.

The following sections of this chapter begin with an imitation of the Phong model in MDL,
followed by a set of strategies for better physical simulations of the interaction of light and
plastic.

7.3 A Phong-like plastic model

The diffuse and specular components of the Phong model are represented in MDL by the dis-
tribution functions df::diffuse_reflection_bsdf (page 34) and df::simple_glossy_bsdf

(page 52). To simulate a “Phong BSDF,” these two components need to be combined but in a
manner that preserves the principle of energy conservation. The control of the spread of the re-
flection by the exponent in the Phong equation is represented in the df::simple_glossy_bsdf

by the relatively more intuitive parameter of roughness.

In the following material, called phonglike_plastic, intensity parameters provide scaling fac-
tors for the diffuse and specular color parameters. The df::normalized_mix (page 110) BSDF
combining function proportionally scales these factors if they exceed 1.0, providing an imple-
mentation of the desired limitation of the reflected light.

132 MDL Handbook © 2021 NVIDIA Corporation

7.3 A Phong-like plastic model 7 Plastic

Listing 7.1

material phonglike_plastic (

color diffuse_color = color(0.7), Diffuse color of plastic body

float diffuse_intensity = 0.8, Intensity of the diffuse color

color highlight_color = color(1), Color of the highlight reflection

float highlight_intensity = 0.2, Intensity of the highlight color

float highlight_roughness = 0.2) = Amount of spread of the highlight

material (

surface: material_surface (

scattering: df::normalized_mix (Mixing function for diffuse color and highlight

components: df::bsdf_component[] (

df::bsdf_component (

weight: diffuse_intensity,

component: df::diffuse_reflection_bsdf (

tint: diffuse_color)),

Diffuse component

df::bsdf_component (

weight: highlight_intensity,

component: df::simple_glossy_bsdf (

tint: highlight_color,

roughness_u: highlight_roughness))))));

Highlight component

Using the phonglike_plastic material with the highlight intensity set to 0.0 produces an im-
age of the diffuse component alone:

Figure 7.3

phonglike_plastic(

diffuse_color:

color(.15, .4, 0),

diffuse_intensity: 0.8,

highlight_intensity: 0.0)

© 2021 NVIDIA Corporation MDL Handbook 133

7 Plastic 7.3 A Phong-like plastic model

Setting the diffuse intensity to 0.0 produces an image that only contains the “highlights” cre-
ated by the df::simple_glossy_bsdf distribution function:

Figure 7.4

phonglike_plastic(

diffuse_color:

color(.15, .4, 0),

diffuse_intensity: 0.0,

highlight_intensity: 0.2)

Combining the two components with the df::normalized_mix function produces Figure 7.5:

Figure 7.5

phonglike_plastic(

diffuse_color:

color(.15, .4, 0),

highlight_roughness: 0.2)

The roughness of the surface is controlled by the material’s highlight_roughness parame-
ter, passed within the material as an argument to the df::simple_glossy_bsdf distribution
function:

134 MDL Handbook © 2021 NVIDIA Corporation

7.4 Layering a Phong-like plastic model 7 Plastic

Figure 7.6

phonglike_plastic(

diffuse_color:

color(.15, .4, 0),

highlight_roughness: .05)

Figure 7.7

phonglike_plastic(

diffuse_color:

color(.15, .4, 0),

highlight_roughness: .3)

The phonglike_plastic material will behave very much like the Phong illumination model.
However, function df::normalized_mix will adjust the intensity parameters so that their sum
is never greater than 1.0. If an application user sets one intensity parameter to a value that
would create an intensity sum greater than 1.0, the other component will become darker in a
potentially unexpected way.

7.4 Layering a Phong-like plastic model

The previous material, phonglike_plastic, implemented the Phong equation’s addition of
the diffuse and “specular” components by using the df::normalized_mix function. A com-
bination of diffuse and glossy components can also be implemented by defining an order for
their evalution using the df::weighted_layer (page 110) function.

© 2021 NVIDIA Corporation MDL Handbook 135

7 Plastic 7.4 Layering a Phong-like plastic model

Listing 7.2

material phonglike_plastic_layered (

color diffuse_color = color(0.7),

color highlight_color = color(1.0),

float highlight_intensity = 0.2, Fractional contribution of the highlight component

float highlight_roughness = 0.2) =

material (

surface: material_surface (

scattering: df::weighted_layer (Layering function

weight: highlight_intensity, Highlight contribution fraction

base: df::diffuse_reflection_bsdf (

tint: diffuse_color),
Diffuse component

layer: df::simple_glossy_bsdf (

tint: highlight_color,

roughness_u: highlight_roughness))));

Highlight component

Rendering with the phonglike_plastic_layered material produces Figure 7.8:

Figure 7.8

phonglike_plastic_layered(

diffuse_color:

color(.15, .4, 0),

highlight_roughness: .25)

The appearance of objects in the real world is often due to layers of substances with different
reflective properties, for example, a coat of varnish over an oil painting or shellac on wood.
The changes to the light as it moves through these layers determines the object’s ultimate
appearance. The explicit order of the df::weighted_layer function enables this real-world
layering to be intuitively expressed directly in MDL. The highlights of plastic are modeled in
phonglike_plastic_layered as a glossy layer above the diffuse reflection of a colored base.
As the contribution of the highlight layer is increased by increasing the weight parameter of

136 MDL Handbook © 2021 NVIDIA Corporation

7.5 Modeling the dielectric properties of plastic 7 Plastic

df::weighted_layer, the contribution of the diffuse base component is decreased, thereby
maintaining energy conservation by keeping the sum of their weights below or equal to 1.0.

7.5 Modeling the dielectric properties of plastic

Plastic is an example of a class of physical materials called dielectrics. As a dielectric, the in-
crease in plastic’s reflectivity at shallow grazing angles is pronounced. This increased reflec-
tivity of plastic can be modeled with the df::fresnel_layer (page 93) combining function.
Increased reflectivity from the Fresnel effect is proportional to the index of refraction.

Listing 7.3

material dielectric_plastic (

color diffuse_color = color(0.5, 0.04, 0.04),

color glossy_color = color(1.0),

float glossy_weight = 1.0, Relative weight of the glossy component

float glossy_roughness = 0.05,

float ior = 1.54) =

material (

surface: material_surface (

scattering: df::fresnel_layer (Fresnel-based layering function

ior: color(ior), Index of refraction

weight: glossy_weight, Weight parameter to control layer proportions

layer: df::simple_glossy_bsdf (

tint: glossy_color,

roughness_u: glossy_roughness),

Glossy layer

base: df::diffuse_reflection_bsdf (

tint: diffuse_color))));
Diffuse layer

Rendering with the dielectric_plastic material produces Figure 7.9 (page 138) and Figure
7.10 (page 138):

© 2021 NVIDIA Corporation MDL Handbook 137

7 Plastic 7.6 Modeling plastic with two glossy lobes

Figure 7.9

dielectric_plastic(

diffuse_color:

color(.15, .4, 0),

ior: 1.35,

glossy_roughness: 0.1)

Figure 7.10

dielectric_plastic(

diffuse_color:

color(.15, .4, 0),

ior: 1.575,

glossy_roughness: 0.1)

Real-world measurements for industrial plastics include their index of refraction. An MDL
material can accurately simulate the reflective properties of a particular type of plastic by in-
cluding its measured index of refraction in the material struct.

7.6 Modeling plastic with two glossy lobes

The “highlights” of the original Phong model simulate the reflections of small light sources,
blurred across the surface by a cosine function raised to a power. Increasing the exponential
term creates the appearance of increasingly rougher surfaces and the blurrier reflections they
produce. The reflection characteristics of actual plastic may not be so simple, however. A sharp
highlight could be surrounded by a blurred reflection that could not be simulated by the expo-
nential property of the Phong specular term.

138 MDL Handbook © 2021 NVIDIA Corporation

7.6 Modeling plastic with two glossy lobes 7 Plastic

Complex highlights for plastic can be created by combining more than one glossy distribu-
tion function to produce multiple “lobes” as described in section 4.4.2 (page 112). In the fol-
lowing dielectric_plastic_two_lobe material, two df::simple_glossy_bsdf instances are
combined using df::normalize_mix. The result is then combined with the diffuse component
using df::fresnel_layer to create the increased intensity of reflection at shallow grazing an-
gles.

Listing 7.4

material dielectric_plastic_two_lobe (

color diffuse_color = color(0.5, 0.04, 0.04),

color glossy_color = color(1.0),

float glossy_roughness_1 = 0.05,

float glossy_weight_1 = 0.5,
Parameters of the first lobe

float glossy_roughness_2 = 0.25,

float glossy_weight_2 = 0.5,
Parameters of the second lobe

float glossy_weight = 1.0,

float ior = 1.54) =

material (

surface: material_surface (

scattering: df::fresnel_layer (
Fresnel layering to combine glossy and diffuse
components

ior: color(ior),

weight: glossy_weight,

layer: df::normalized_mix (

components: df::bsdf_component[] (

df::bsdf_component (

weight: glossy_weight_1,

component: df::simple_glossy_bsdf (

tint: glossy_color,

roughness_u: glossy_roughness_1)),

df::bsdf_component (

weight: glossy_weight_2,

component: df::simple_glossy_bsdf (

tint: glossy_color,

roughness_u: glossy_roughness_2)))),

Overall glossy
component created
from two glossy BSDFs
combined using
“df::normalize_mix”

base: df::diffuse_reflection_bsdf (

tint: diffuse_color))));
Diffuse component

Rendering with the dielectric_plastic_two_lobe material produces Figure 7.11 (page 140)
and Figure 7.12 (page 140).

© 2021 NVIDIA Corporation MDL Handbook 139

7 Plastic 7.7 Adding translucency to plastic

Figure 7.11

dielectric_plastic_two_lobe(

diffuse_color:

color(.15, .4, 0),

ior: 1.575,

glossy_roughness_1: 0.05,

glossy_roughness_2: .2)

Figure 7.12

dielectric_plastic_two_lobe(

diffuse_color:

color(.15, .4, 0),

ior: 1.5894,

glossy_roughness_1: 0.1,

glossy_roughness_2: .35)

Extending the dielectric_plastic_two_lobe material to more than two lobes is straightfor-
ward: for each additional component in the df::normalized_mix, two additional parameters
for roughness and weight are added to the parameters of the material. The parameter adjust-
ments of multiple lobes in order to achieve a particular appearance might require tweaking by
eye in an interactive application, in some ways a return to the empirical origins of the Phong
model.

7.7 Adding translucency to plastic

All the previous materials of this chapter have simulated the interaction of light with plastic as
purely a surface effect. Based on the chemical constitution of the plastic, some amount of light
may penetrate the surface, creating an effect of translucency. The appearance of translucency

140 MDL Handbook © 2021 NVIDIA Corporation

7.7 Adding translucency to plastic 7 Plastic

can be added to the dielectric_plastic_two_lobe material of the last section by developing
a material that implements diffuse transmission (as in section 3.4 (page 38)) and combining it
with the two-lobe material.

The following material uses df::diffuse_transmission_bsdf to simulate translucency:

Listing 7.5

material translucency(

color transmission_color = color(1)) =

material (

thin_walled: true, Refraction disabled with thin-wall model

surface: material_surface (

scattering: df::diffuse_transmission_bsdf (

tint: transmission_color)));
Diffuse transmission BSDF

Rendering with this simple material produces Figure 7.13:

Figure 7.13

translucency(

transmission_color:

color(0.95, 1.0, 0.9))

To combine the visual properties of dielectric_plastic_two_lobes with translucency, a
new material must combine the “scattering” BSDFs of the materials defined by their surface

properties. To extract the BSDF of a material instance, the dot operator is used in combination
with the field names (as described in “Reusing parts of existing materials” (page 100)).

For example, the following material, which combines the opaque appearance of dielectric_

plastic_two_lobes with the translucent appearance of translucency, uses the dot operator
in this way:

bsdf name = material-instance .surface.scattering;

For clarity, the dot operator’s extraction of each material’s BSDF is placed on a line after the
closing parenthesis for clarity; this is possible because whitespace is ignored (page 33) in MDL.

© 2021 NVIDIA Corporation MDL Handbook 141

7 Plastic 7.7 Adding translucency to plastic

Listing 7.6

material translucent_plastic (

color diffuse_color = color(0.5, 0.04, 0.04),

color glossy_color = color(1.0),

float glossy_roughness_1 = 0.05,

float glossy_weight_1 = 0.5,
Parameters of the first lobe

float glossy_roughness_2 = 0.25,

float glossy_weight_2 = 0.5,
Parameters of the second lobe

float glossy_weight = 1.0,

float ior = 1.54,

float transmission_weight = 0.2,

color transmission_color = color(0.9),

float transmission_exponent = 3.0) =

Parameters of the translucency component

let {

bsdf opaque = dielectric_plastic_two_lobe(

diffuse_color: diffuse_color,

glossy_color: glossy_color,

glossy_roughness_1: glossy_roughness_1,

glossy_weight_1: glossy_weight_1,

glossy_roughness_2: glossy_roughness_2,

glossy_weight_2: glossy_weight_2,

glossy_weight: glossy_weight,

ior: ior)

.surface.scattering;

BSDF of opaque (non-transmissive)
surfaces extracted frommaterial
“dielectric_plastic_two_lobe”

bsdf translucent = translucency(

transmission_color: transmission_color)

.surface.scattering;

Translucency BSDF extracted from
material “translucency”

} in

material (

thin_walled: true,

surface: material_surface (

scattering: df::custom_curve_layer (

weight: 1.0,

normal_reflectivity: 1.0 - transmission_weight,

grazing_reflectivity: 1.0,

exponent: transmission_exponent,

layer: opaque,

base: translucent)));

Opaque and translucent
components combined
with “df::custom_
curve_layer”

Using the translucent_plastic material produces Figure 7.14 (page 143):

142 MDL Handbook © 2021 NVIDIA Corporation

7.7 Adding translucency to plastic 7 Plastic

Figure 7.14

translucent_plastic(

diffuse_color:

color(.15, .4, 0),

ior: 1.5894,

glossy_roughness_1: 0.1,

glossy_roughness_2: .35,

transmission_weight: 0.5,

transmission_color:

color(0.95, 1.0, 0.9))

Using the dot operator to extract a BSDF from a fully developed and independently useful
material demonstrates the value of material libraries and the recombinations they promote.

In the next two chapters, topics introduced in the exploration of the Phong model will be de-
veloped further. Glass (page 59) is another dielectric material with similar surface properties
that can be augmented by volume distribution functions. The technique of material combi-
nation through the extraction of BSDFs will provide translucency to a model of woven fabric
(page 145).

Fig. 7.15 – Material translucent plastic

© 2021 NVIDIA Corporation MDL Handbook 143

7 Plastic 7.7 Adding translucency to plastic

144 MDL Handbook © 2021 NVIDIA Corporation

8 Fabric
The previous two chapters presented the set of BSDFs defined by MDL and the functions that
can combine them. With these ideas in place, the development of an MDL material can proceed
in the other conceptual direction: rather than starting with elemental MDL building blocks to
see what can be produced, the material designer can begin with a visual effect in the physical
world, analyze it, break it into simpler parts, and investigate how an MDL material could
simulate that visual effect.

This chapter develops a material to simulate the appearance of silk-like fabric that displays iri-
descence—the fabric appears to change color when viewed from different directions. This MDL
material is inspired by research done by Iman Sadeghi and others at the University of Califor-
nia, San Diego, and published in a 2013 paper entitled “A Practical Microcylinder Appearance
Model for Cloth Rendering.7”

8.1 A strategy for an MDLmaterial

Many problems can be simplified by decomposing them into a set of smaller problems. Model-
ing the appearance of fabric lends itself to this approach. Weaving intertwines two sets strings
at right angles; the strategy in this chapter is to first consider these two sets separately.

The traditional names for the two sets of strings are warp and weft. The word “warp” is related
to the Old Norse varp, the throw of a dragging net. It is the warp strings, fixed to the loom
like a net, that catch the strings of the weft—related to English “weave”—as they are woven
through the warp. For the purposes of an MDL material, we simplify the structure of the warp
and the weft by assuming that the warp strings are effectively in line with the surface of the
fabric.

weft

w
arp o

o

Fig. 8.1 – The names of the two thread directions

7. http://graphics.ucsd.edu/˜iman/a_practical_microcylinder_appearance_model_for_cloth_

rendering.php

© 2021 NVIDIA Corporation MDL Handbook 145

http://graphics.ucsd.edu/~iman/a_practical_microcylinder_appearance_model_for_cloth_rendering.php
http://graphics.ucsd.edu/~iman/a_practical_microcylinder_appearance_model_for_cloth_rendering.php

8 Fabric 8.2 Simplifying assumptions

Besides the separate shape and reflectivity of the warp and the weft, the thickness of the mate-
rial will affect how much light is transmitted through the fabric, its translucency. By designing
separate materials for the warp and the weft—to be combined using the techniques of the last
chapter—the fabric model can be separated into three parts:

1. The appearance of the warp: a set of straight strings

2. The appearance of the weft: a set of periodically curving strings

3. The appearance of the fabric: a combination of the warp and weft with iridescence and
translucency

To suggest the relationship of the code with the real-world model, the terms “warp” and “weft”
will be used in the names of materials and their parameters. Students of the cinema may find
that remembering the difference between the two directions is simplified by considering the
Elmer Fudd Mnemonic: “The weft goes from weft to wight.”

8.2 Simplifying assumptions

The research paper mentioned previously treats the threads of the warp and weft as microcylin-
ders, cylinders small enough that they cannot be seen individually, but which when considered
together display an appearance that can be described in a statistical way, without regard to the
individual cylinders themselves. The microcylinder model suggests two properties that can be
implemented in a material: directional reflections and multiple highlights.

8.2.1 An isotropic cylinder appears to be anisotropic

Section 3.7 described anisotropic glossy reflection, in which reflection is oriented with respect
to the surface due to its geometric properties, like brushed metal. If the threads in a fabric are
made of a glossily reflective material, like silk, the cylindrical model suggests that the reflection
will appear to be oriented in the direction of the thread, even if the reflection is not explicitly
defined to be anisotropic. For example, both the cylinders and sphere in Figure 8.2 are rendered
with equal glossy roughness in both the u and v directions, though the cylinders’ reflections
appear anisotropic.

Fig. 8.2 – Appearance of aniostropic reflection on cylinders aligned together

146 MDL Handbook © 2021 NVIDIA Corporation

8.3 The structural design of the fabric material 8 Fabric

Turning this around, a single surface with oriented reflections can look like the result of the
oriented reflections of a fabric’s threads. Both the warp and weft materials in this chapter use
this anisotropic property, but with their reflections oriented at right angles, like the threads
themselves.

8.2.2 Multiple warp threads can create multiple highlights on the we�

The initial illustration of the warp and weft depicted only the simplest possible weaving pat-
tern. When multiple warp threads are taken together for the path of the weft, the small struc-
ture of the weft as it goes in and out of the warp may not be so symmetrical. For example, one
weft thread may go under a single warp thread, then over two warp threads, then under one
warp thread again, and so on—1, 2, 1, 2, 1....

Fig. 8.3 – Doubled threads in the warp create three reflective surfaces in the weft

Modeling the weft thread as a flexible cylinder that is under tension as it courses through the
warp suggests that the curvature may not be the same throughout—that some areas may be
relatively flat enough to create separately reflecting surfaces. The weft material in this chapter
simulates three highlights from the flattening of the thread path suggested by the diagram.
An analysis of the structure of other weaving patterns could inspire similar types of complex
reflections.

8.3 The structural design of the fabric material

The combining functions of the previous chapter provide the structure for the fabric material.
Weighted layering creates three highlights for the weft from three glossy reflection BSDFs. The
warp, with a single highlight, is defined by a single glossy reflection BSDF. The warp and
weft BSDFs are combined in a directionally dependent manner by the custom_curve_layer

function to create the iridescent shift of color across the surface. Finally, a translucent layer
is added, also controlled by custom_curve_layer so that the fabric seen straight on adds a
greater degree of translucency than at the edges.

(warp)
highlight

(weft)
layering

(iridescence)
layering

translucency

(thin silk)
layering

highlight

highlight

highlight

Fig. 8.4 – Relationship of the components in the design of the fabric material

© 2021 NVIDIA Corporation MDL Handbook 147

8 Fabric 8.4 The directional sheen of the warp

8.4 The directional sheen of the warp

The anisotropic glossy reflection of the warp’s highlight can be defined by df::simple_glossy_

bsdf. The anisotropic_glossy material makes both the roughness in the u and in the v direc-
tion available as parameters.

Listing 8.1

material anisotropic_glossy (

color tint = color(0.7),

float roughness_u = 1.0,

float roughness_v = 0.15) =

material (

surface: material_surface (

scattering: df::simple_glossy_bsdf (Glossy reflection distribution function

tint: tint,

roughness_u: roughness_u,

roughness_v: roughness_v,
Control of anisotropic reflection

mode: df::scatter_reflect)));

In Figure 8.5, the spheres show the single anisotropic highlight from the warp. The variable
shape of the fabric creates a much more complex set of reflections, showing the importance of
geometry in displaying the appearance of a material.

Figure 8.5

anisotropic_glossy(

tint:

color(.3, .22, .3),

roughness_v: .3)

The anisotropic material, used by itself for the warp component, will also define the three
highlights of the weft in the next section.

148 MDL Handbook © 2021 NVIDIA Corporation

8.5 Creating multiple highlights 8 Fabric

8.5 Creating multiple highlights

Now a simplification from a previous chapter reveals itself. The BSDF layering functions all
include another parameter not described there, the surface normal vector to be used for that
layering operation. For the weft material, the df::weighted_layer function will include the
normal vector in this way:

df::weighted_layer (

weight: layer-fraction,

normal: vector,
layer: BSDF,

base: BSDF)

By default, the normal vector used for lighting calculations is the normal defined by the ge-
ometric surface. However, the geometrically derived normal can be replaced by an arbitrary
vector. For the weft material, one highlight will be produced by the default normal vector, the
two others from modifying, or perturbing, the normal vector.

Based on the previous diagram of doubled warp threads, the two modified normals will be
“bent” to the right and to the left, respectively. In this case, “left” and “right” will mean mov-
ing in the u direction in the texture space on the surface using standard MDL functions. Texture
spaces and MDL functions are described in the next chapter; the important point here is that
the apparent orientation of the surface—and thereby the reflection direction—can be manipu-
lated by modifying the description of surface orientation, the surface normal.

Listing 8.2

math::normalize(Normalize the result of:

state:normal() Acquiring the surface normal

+ state::texture_tangent_u() ...and lengthening it in the u direction

* bend_factor) ...scaled by some amount.

In the material for the weft definition, anisotropic_glossy_three_lobes, this expression is
used twice within a let-expression to define the two different normal vectors (left and right).

Listing 8.3

material anisotropic_glossy_three_lobes (

color tint = color(0.7),

float roughness = 0.1,

uniform float bend_factor = 1.5)

=

let {

float3 left_normal = math::normalize(

state::normal()

+ state::texture_tangent_u(0)

* -bend_factor);

Bend the normal vector one way

© 2021 NVIDIA Corporation MDL Handbook 149

8 Fabric 8.5 Creating multiple highlights

float3 right_normal = math::normalize(

state::normal()

+ state::texture_tangent_u(0)

* bend_factor);

Bend it the other way

bsdf glossy_component = anisotropic_glossy(

tint: tint,

roughness_v: 1,

roughness_u: roughness).surface.scattering;

} in

material (

surface: material_surface (

scattering: df::weighted_layer (

weight: 0.5, Mix half and half with combined layers below

normal: state::normal(), The unmodified normal vector

layer: glossy_component,

base: df::weighted_layer (

weight: 0.5, Mix half and half with layer below

normal: right_normal, Themodified normal vector

layer: glossy_component,

base: df::weighted_layer (

weight: 1.0, Full intensity for bottom layer

normal: left_normal, Themodified normal vector

layer: glossy_component)))));

Rendering the fabric and spherical objects with anisotropic_glossy_three_lobes produces
the image. As with the warp image, the spheres help demonstrate the anisotropic effect: in this
case for the three highlights from the use of df::weighted_layer.

150 MDL Handbook © 2021 NVIDIA Corporation

8.6 Combining the warp and the we� 8 Fabric

Figure 8.6

anisotropic_glossy_three_lobes(

tint:

color(.2, .3, .2),

roughness: .15)

8.6 Combining the warp and the we�

With the warp and weft components defined, the structure of the combining material requires
that the internal parameters of the warp and weft can still be controlled. The relative weight of
the warp and the weft should also be modifiable.

Default colors that very clearly demonstrate the warp and weft combination are defined as
const variables of type color.

const color magenta = color(.3, .22, .3);

const color green = color(.20, .3, .2);

As the material becomes more complex, naming conventions in its parameters and the use of
a let-expression help keep its intent clear.

Listing 8.4

material warp_and_weft(

color warp_color = magenta,

float warp_roughness = 0.3,
Warp control

color weft_color = green,

float weft_roughness = 0.15,

uniform float weft_bend_factor = 1.5,
We� control

uniform float warp_to_weft = 3, The proportional warp contribution

float shadowing = 0.0) Control of the amount of self-shadowing by the fabric

=

let {

© 2021 NVIDIA Corporation MDL Handbook 151

8 Fabric 8.6 Combining the warp and the we�

bsdf warp = anisotropic_glossy (

tint: warp_color,

roughness_u: 1.0,

roughness_v: warp_roughness).surface.scattering;

Calculate the warp layer

bsdf weft = anisotropic_glossy_three_lobes (

tint: weft_color,

roughness: weft_roughness,

bend_factor: weft_bend_factor).surface.scattering;

Calculate the we�
layer

float warp_weight =

warp_to_weft > 1 ? 1.0 - 1.0 / warp_to_weft : warp_to_weft;

Calculate
the warp
factor

} in

material (

surface: material_surface (

scattering: df::custom_curve_layer (
Use default black layer to add
self-shadowing effect

weight: shadowing, Contribution of default black layer

normal_reflectivity: 0.05,

grazing_reflectivity: 1.0,

exponent: 3,

base: df::weighted_layer (

weight: warp_weight,

layer: weft,

base: warp))));

Combine warp and we� layers

The strong color contrast between the magenta warp and green weft components helps clarify
their contribution in the more complex geometry of the fabric.

Figure 8.7

warp_and_weft(

warp_color:

color(.3, .22, .3),

weft_color:

color(.2, .3, .2))

152 MDL Handbook © 2021 NVIDIA Corporation

8.7 A translucency component for thinner fabric 8 Fabric

8.7 A translucency component for thinner fabric

The warp_and_weft material is fully opaque, though thin silk-like materials will allow some
light to pass through. For this contribution of light transmission, a separate material for translu-
cency uses df::diffuse_transmission_bsdf.

Listing 8.5

material translucency(

color transmission_color = color(1))

=

material(

thin_walled: true,

surface: material_surface (

scattering: df::diffuse_transmission_bsdf (

tint: transmission_color)));
Light scattering by
transmission

Figure 8.8

translucency()

Note that this is a general material that could readily be used as a building block in any mate-
rial that requires such a translucent component. Often in developing complex materials, such
generic building blocks will suggest themselves, and can be collected in libraries of materials
that will simplify future material development.

8.8 Combining iridescence and translucency

Adding translucency to the warp_and_weft material requires two changes:

1. Add parameters to control the degree of translucency

2. Combine the BSDF of the warp_and_weft with the BSDF of translucency

© 2021 NVIDIA Corporation MDL Handbook 153

8 Fabric 8.8 Combining iridescence and translucency

The BSDF of warp_and_weft and translucency are defined as temporary variables in a let-
expression. The body of the material combines them with function df::custom_curve_layer.

Listing 8.6

material iridescent_silk (

color warp_color = magenta,

float warp_roughness = 0.3,
Warp control

color weft_color = green,

float weft_roughness = 0.15,

uniform float weft_bend_factor = 1.5,
We� control

uniform float warp_to_weft = 3, Proportional contribution of warp

float transmission_weight = 0.2,

color transmission_color = color(0.95, 1.0, 0.95),

float transmission_exponent = 3.0,
Transmission control

float shadowing = 0.0) Self-shadowing control

=

let {

bsdf glossy = warp_and_weft(

warp_color: warp_color,

warp_roughness: warp_roughness,

weft_color: weft_color,

weft_roughness: weft_roughness,

weft_bend_factor: weft_bend_factor,

warp_to_weft: warp_to_weft,

shadowing: shadowing).surface.scattering;

Glossiness calculation

bsdf translucent = translucency(

transmission_color:
Translucency calculation

transmission_color).surface.scattering;

} in

material (

thin_walled: true,

surface: material_surface (

scattering: df::custom_curve_layer (Layering function

weight: 1.0,

normal_reflectivity: 1.0 - transmission_weight,

grazing_reflectivity: 1.0,

exponent: transmission_exponent,

layer: glossy, Glossy layer

base: translucent))); Translucent layer

154 MDL Handbook © 2021 NVIDIA Corporation

8.8 Combining iridescence and translucency 8 Fabric

The degree of translucency is controlled by the transmission_weight parameter to the mate-
rial. The default value of 0.2 produces Figure 8.9:

Figure 8.9

iridescent_silk()

By increasing the transmission_weight to 0.5, the fabric appears to be thinner and the shad-
ows have become lighter.

Figure 8.10

iridescent_silk(

transmission_weight: .5

)

The warp and weft color parameters in the previous examples clearly show their individual
contributions. However, a variety of effects are possible that suggest other types of woven silk.

© 2021 NVIDIA Corporation MDL Handbook 155

8 Fabric 8.8 Combining iridescence and translucency

In Figure 8.11, the single blue highlight of the warp predominates, with wide highlights of
dark red providing a subtle sheen in the flatter surfaces.

Figure 8.11

iridescent_silk(

warp_color:

color(.2, .3, .6),

weft_color:

color(.07, .05, .05),

transmission_color:

color(.95, .95, 1),

transmission_weight: .05,

shadowing: .3,

warp_roughness: .3,

weft_roughness: .15

)

156 MDL Handbook © 2021 NVIDIA Corporation

Part 4 Defining functions

© 2021 NVIDIA Corporation MDL Handbook 157

158 MDL Handbook © 2021 NVIDIA Corporation

9 Function calls as arguments
MDL employs two different programming language paradigms, each appropriate for the type
of information it needs to describe:

• In the first paradigm, a material is defined by a set of properties. Creating a new material
consists of specifying values for those properties, for example, the emission distribution
function for a light. The distribution functions themselves have properties so that defin-
ing the intensity of emission consists of providing a value for the intensity property of
the emission distribution function. This type of programming, in which the manner of
execution is not defined, but the end result (for example, an emission intensity of 100
watts), is called declarative programming.

• In the second paradigm, an MDL material can specify values like emission intensity. It
does this by calling functions defined in the MDL standard function library in possible
combination with custom functions defined by the author of the material. The functions
of the standard library functions and the ability to define new ones provide MDL with an
imperative programming language model that describes how a value should be calculated.

This chapter explores the possibilities in MDL for the procedural definition of material struct
parameters that are provided by the imperative paradigm. For more information on specific
language features and for additional examples of MDL syntax in function definition, see the
MDL language specification: NVIDIA Material Definition Language (version 1.6.2, August 5,
2020).8

9.1 The syntax of imperative MDL

The general syntax of user-defined functions will be familiar to programmers using any of the
wide variety of languages that have been influenced by the C and C++ languages. Readers
familiar with C-style syntax may consider skipping to the next section; control structures like
for and if are identical in form to C. However, there are important limitations to MDL with
regard to standard C programming techniques, as well as useful extensions. This section will
briefly present the language features required to understand the example functions developed
in the following sections. Where there are important differences between MDL’s language for
function definition and C/C++, these will be noted in the examples in this and later chapters.

9.1.1 Data types and variables

The previous chapters have already presented the high-level data types of MDL that are spe-
cific to the domain of appearance definition: distribution function objects (bsdf, edf, vdf)
and the various struct types for material definition (for example, material and material_

surface). The struct is a compound type; it combines in one datum a set of other data values.
In user-defined functions, the simple (non-compound) types are frequently used: int (inte-
ger), float and double (approximations of the mathematical concept of real numbers), and
bool (the Boolean values of true and false). The color type is also a primitive type in MDL

8. http://mdlhandbook.com/pdf/MDL_spec_1.6.2_05Aug2020.pdf

© 2021 NVIDIA Corporation MDL Handbook 159

http://mdlhandbook.com/pdf/MDL_spec_1.6.2_05Aug2020.pdf
http://mdlhandbook.com/pdf/MDL_spec_1.6.2_05Aug2020.pdf

9 Function calls as arguments 9.1 The syntax of imperative MDL

and will often be the value that is produced by a function. A few programming elements were
introduced in “The struct type” (page 20). This section provides a more general description of
the fundamentals required for writing MDL functions.

A name that refers to a value is called a variable. To use a variable in an MDL function, the
variable must first be declared, which associates the variable’s name with a data type. The data
that the variable represents is called the variable’s value. If a value is specified at the time the
variable is declared, this specification initializes the variable.

To declare a variable and give it a value, the constructor for that data type is used to create the
value. The constructor syntax specifies the initial value or values for the variable as required by
the variable’s data type. The full form of a variable declaration uses the equal sign to associate
the name with its initial value:

data-type variable-name = data-type (arguments);

For example, the following line declares a variable of type float named total and initializes
the variable to 0.0:

float total = float(0.0);

For simple (non-compound) types, explicitly specifying the constructor is unnecessary:

float total = 0.0;

An abbreviated form removes the redundant use of the type name:

float total(0.0);

This abbreviated form is most useful for compound types:

color blue(0.0, 0.0, 1.0);

A variable must have a value; if it is not initialized when it is declared, the default value for the
data type is used as the initial value. Default values are typically a value that can be thought of
as “zero” for the type; numeric zero for int, float and double, or “black” for the color type
(color(0.0, 0.0, 0.0), also abbreviated as color(0.0)). This idea of a “zero equivalent” for
the default value is also used by the components of the material struct; if no emission value
is defined for the material_surface struct, then no light is emitted.

The equals sign (=) is used in variable declaration in a different sense here than in mathematics;
total is not equal to 0.0, total currently has a value of 0.0, a value that can be changed later
in the function. However, in talking about variables, it would be typical to say something like,
“at the beginning, the total is zero,” with the variable name representing the concept of “total”
throughout the function.

Variable declarations are also provided by the let-expression, as described in “Simplifying a
material’s structure with temporary variables” (page 97).

9.1.2 Control flow

The declaration of variables is one example of a statement in MDL; it is the simplest unit of a
user-defined function. Other statements define when and how many times a set of statements
should be executed. The syntax of the looping and conditional statements—control flow – will
be very familiar to C/C++ programmers.

160 MDL Handbook © 2021 NVIDIA Corporation

9.1 The syntax of imperative MDL 9 Function calls as arguments

The most flexible loop structure is the for statement:

for (variable-declaration ; termination-condition ; end-of-loop-action) {

statements
}

The curly braces that surround the statements of the for loop create a block. Wherever a single
statement can appear, a sequence of statements can be provided instead by surrounding the
sequence with curly braces.

For example, this code fragment will sum up all the integers from 1 to 42:

int sum = 0;

for (int i = 1; i < 43; i = i + 1) {

sum = sum + i;

}

This can be read as, “Start with i equal to 0, and while i is less than 43, add i to sum and add
1 to i.”

In this case, the curly braces were not strictly necessary because only a single statement was
executed by the loop. The for loop could have therefore been written without the braces:

int sum = 0;

for (int i = 1; i < 43; i = i + 1)

sum = sum + i;

Because they occur so frequently in structures like loops, MDL also provides C’s set of incre-
ment and decrement abbreviations, for example:

Abbreviation Equivalent to

++i i = i + 1

--i i = i - 1

i += 10 i = i + 10

i -= 10 i = i - 10

The previous example can be rewritten using the increment abbreviations:

int sum = 0;

for (int i = 1; i < 43; ++i)

sum += i;

The if statement is the other important control flow structure and enables conditional execution
of sequences of one or more statements. The if statement has two forms. In the first form, a
Boolean expression is evaluated—the condition—to determine whether it is true or false. If the
statement is true, the next statement (or block) is executed. If not, no statements are executed.

if (Boolean-expression) {

statements-if-expression-is-true...
}

In the second form of the if statement, a second statement/block is preceded by else. This
second statement/block is executed only if the Boolean expression is false.

© 2021 NVIDIA Corporation MDL Handbook 161

9 Function calls as arguments 9.1 The syntax of imperative MDL

if (Boolean-expression) {

statements-if-expression-is-true...
} else {

statements-if-expression-is-false...
}

MDL also provides a conditional expression that uses the characters “?” and “:”.

Boolean-expression ? value-if-expression-is-true : value-if-expression-is-false

This example initializes color variable height_color to be white if the y coordinate of the
current position is greater than 0.0 and black if it is not.

float3 position(0.0);

...

color height_color = position.y > 0.0 ? color(1) : color(0);

The “...” in the example would include the calculation of the current point using MDL’s
renderer state functions, which are described in the next section.

9.1.3 Standard functions and MDLmodules

Several of the user-defined functions developed later in this chapter depend upon the rendering
state, data used by the rendering system in calculations that depend upon attributes of the
geometric structures that are being rendered. These values of the rendering state are available
through functions that are not part of the MDL language, but are defined in a separate software
component called a module. The module for renderer state functions, called the state module,
is one of a set of standard modules that are defined by the MDL specification. In addition to the
state module, the examples in this chapter will also use the math module, which provides a
set of mathematical functions (for minimum, maximum, cosine, sine, etc.).

The current point in space that is being rendered—the point on a surface or in a volume for
which the material struct is being evaluated—is acquired by using the position state func-
tion. The module name state is used as a prefix to the function name and is separated from it
by two colon characters (::).

float3 pos = state::position();

The float3 type defines the x, y, and z coordinates of the point in 3D space. The float3

value returned by a call to state::position is a point in internal space, an implementation-
dependent coordinate system. Two other spaces are defined by MDL. Object space is the coor-
dinate system of the object being rendered, a local coordinate system for the geometric struc-
tures of the object. World space defines the global coordinate system within which all objects are
positioned.

The state function transform_point can be used to convert the space in which a point is de-
fined to one of the other two spaces.

state::transform_point(original-space, target-space, point-to-transform)

To specify the coordinate spaces in the arguments of state::transform_point, MDL defines
the coordinate_space enum type in the state module. The type definition contains the names
that can be used as arguments to transform_point:

162 MDL Handbook © 2021 NVIDIA Corporation

9.1 The syntax of imperative MDL 9 Function calls as arguments

enum coordinate_space {

coordinate_internal,

coordinate_object,

coordinate_world

};

Combining these elements of the state module, a float3 variable that provides the current
position in object space can be declared and initialized as follows:

float3 object_position = state::transform_point(

state::coordinate_internal,

state::coordinate_object,

state::position());

Note that the state names are prefixed by the state module name when they are used in a
user-defined functions. An enum type is also used to define the scatter mode for BSDFs in
“Specular interaction at a surface” (page 45), but are defined in the df (distribution function)
module and are therefore prefixed with the df:: module name.

Another type of “space” is texture coordinate space, which defines a coordinate system for the
surface of a polygon in a modeling system. Associating a point on the surface of an object with
the value of a function or a color in an image are examples of the traditional computer graph-
ics technique called texture mapping. By convention, the two-dimensional texture coordinate
axes are called u and v (rather than x and y). MDL extends the texture coordinates to three
dimensions, where the coordinates are called u, v, and w.

MDL supports texture mapping through the state function texture_coordinate. Several ex-
amples in this chapter will use the result of texture_coordinate in defining the surface color
as part of the definition of a material.

These various components of MDL—variable declarations, control flow, functions provided by
the standard MDL modules—can be combined in user-defined functions, described in the next
section.

9.1.4 User-defined functions

To augment the set of functions defined by the MDL standard modules, the author of a material
can define custom functions to be used by the arguments of the material struct. A function
consists of one or more statements (the function’s body) that calculate a value that is considered
to be the value of the function. The value that the function calculates is said to be “returned”
from the function when the function is executed. Executing a function is also described as
calling the function.

type-of-return-value function-name (parameters) {

statements
}

One of the statements in the function defines the value returned by the function using the word
return.

return expression ;

© 2021 NVIDIA Corporation MDL Handbook 163

9 Function calls as arguments 9.1 The syntax of imperative MDL

For example, the following function returns the color black if the y position of the object point
is equal or below a value (defined by an argument), but returns white if the point is above that
value:

Listing 9.1

color white_above_value(float y_value = 0.0) {

float3 object_position = state::transform_point(

state::coordinate_internal,

state::coordinate_object,

state::position());

color result; Declare the variable “result” to be of type “color”

if (object_position.y > y_value)

result = color(1);

else

result = color(0);

Calculate the value of “result”

return result; Provide “result” as the value of the function

}

A function may contain more than one return statement, but the function terminates as soon
as the first return statement is executed. Given this property of the return statement, the
previous function could be rewritten as:

Listing 9.2

color white_above_value(float y_value = 0.0) {

float3 object_position = state::transform_point(

state::coordinate_internal,

state::coordinate_object,

state::position());

if (object_position.y > y_value)

return color(1);

else

return color(0);

Alternate “return” statements

}

More than one return statement is considered by many programmers as an example of bad
style. With multiple return statements, the value returned by the function is not immediately
apparent, especially in larger functions. However, many programmers also believe that large
functions are also an example of bad style, so that functions should be small enough that their
behavior can be understood and easily debugged.

Like material constructors, the parameters of a user-defined function can be assigned default
values. For example, calling function white_above_value, the default value for parameter y_

value is 0.0.

white_above_value() is equivalent to white_above_value(0.0)

The float3 type of object_position is a compound type. As used in the preceding white_

above_value function, it represents a three-dimensional point. The three components of the

164 MDL Handbook © 2021 NVIDIA Corporation

9.2 Displaying spatial parameters as colors 9 Function calls as arguments

float3 type represent the x, y, and z coordinates of the point. To use one of these three values
in an expression, the dot operator (.) is used. In this case, the y coordinate is specified with
object_position.y.

Using the variable result to define the function’s return value is not strictly necessary in this
case. Using a conditional expression allows the function to be more compactly written.

Listing 9.3

color white_above_value(float y_value = 0.0) {

float3 object_position = state::transform_point(

state::coordinate_internal,

state::coordinate_object,

state::position());

return

object_position.y > y_value

? color(1.0)

: color(0.0);

Conditional expression

}

Note that an MDL compiler will typically perform optimizations to produce more efficient
code for execution by the rendering system.

9.2 Displaying spatial parameters as colors

As the first example of using standard and user-defined functions, this section will treat a sur-
face property of an object as a color. The state function texture_coordinate returns a float3

value that identifies a point in the texture coordinate space. By using a float3 value in the color

type constructor, the u, v and w values are converted to values of red, green, and blue.

Listing 9.4

material uv_as_color_material() =

let {

color diffuse_color =

color(state::texture_coordinate(0));
Calling the state function
“texture_coordinate”

bsdf diffuse_bsdf = df::diffuse_reflection_bsdf(

tint: diffuse_color);

} in material(

surface: material_surface(

scattering: diffuse_bsdf));

Typically, the values of an object’s texture coordinates are in the range of 0.0 to 1.0, producing
colors that are combinations of red and green. The objects in the example scene all have texture
coordinates in the 0.0 to 1.0 range.

© 2021 NVIDIA Corporation MDL Handbook 165

9 Function calls as arguments 9.3 Mapping from spatial parameters to an image

Figure 9.1

uv_as_color_material()

To demonstrate the use of a user-defined function as the value of a parameter in a material, the
call to state::texture_coordinate can be wrapped in a function with a name that describes
its intended use as a color.

Listing 9.5

color uv_as_color() {

return color(state::texture_coordinate(0)); Calling the state function

}

Now the user-defined function takes the place of the color constructor in the let-expression.

Listing 9.6

material uv_as_color () =

let {

color diffuse_color = uv_as_color(); Call the user-defined function “uv_as_color”

bsdf diffuse_bsdf = df::diffuse_reflection_bsdf(

tint: diffuse_color);

} in

material(

surface: material_surface(

scattering: diffuse_bsdf));

Though the body of the uv_as_color function only contains a return statement, the name
provides an explanation of the value produced by the function.

9.3 Mapping from spatial parameters to an image

The texture coordinates of an object’s surface are frequently used in mapping the pixel values
of a digital image to the surface of an object. An image to be used in this way is represented
in MDL as an instance of the type texture_2d. A constructor for a texture_2d can take the
filename of an image file as an argument.

texture_2d(image-filename)

166 MDL Handbook © 2021 NVIDIA Corporation

9.3 Mapping from spatial parameters to an image 9 Function calls as arguments

A coordinate system is defined for texture_2d images in which the origin is at the lower left
corner and the two axes, called u and v, range from 0.0 to 1.0. This range is used for u and v
for images of any aspect ratio.

0.0

1.0

0.0 1.0

u

v
[0.2,0.4]

[0.6,0.9]

0.0

1.0

0.0 1.0

u

v
[0.2,0.4]

[0.6,0.9]

0.0

1.0

0.0 1.0

u

v
[0.2,0.4]

[0.6,0.9]

Fig. 9.2 – The uv coordinate system scales to fit the image

Given an instance of texture_2d, a color value can be sampled from the image with the state
function lookup_color in the tex module.

tex::lookup_color(instance-of-texture_2d, uv-coordinates)

For example, the following code example initializes the variable center_color with the color
of the center of the image file background.png.

color center_color =

tex::lookup_color(texture_2d("background.png"), float2(0.5, 0.5));

In the previous section, the texture coordinate in the renderer state as provided by function
state::texture_coordinate was displayed as a color. In the more typical use of state::texture_

coordinate it provides the mapping from colors in an image to colors on the surface of a
geometric object. This mapping can be encapsulated in a function:

Listing 9.7

color texture_2d_lookup(uniform texture_2d texture) {

float3 uvw = state::texture_coordinate(0); uv coordinates

return tex::lookup_color(texture, float2(uvw.x, uvw.y)); Color lookup in
texture

}

To use this texture function in a material, consider this material definition:

Listing 9.8

material generic_diffuse_material(

color diffuse_color = color(1.0)) = Defining a material parameter of type “color”

let {

bsdf diffuse_bsdf = df::diffuse_reflection_bsdf(

tint: diffuse_color); Using the color parameter for the “tint” field value

} in

© 2021 NVIDIA Corporation MDL Handbook 167

9 Function calls as arguments 9.3 Mapping from spatial parameters to an image

material(

surface: material_surface(

scattering: diffuse_bsdf));

The material’s single parameter defines the color for the diffuse reflection BSDF. For example,
assume that Figure 9.3 is available in the file system as a file named “uv.png”.

Fig. 9.3 – Image file uv.png

The image in file uv.png can be used as the value of the diffuse reflection color in the following
way:

Listing 9.9

material tex2d_diffuse() =

generic_diffuse_material(

diffuse_color:

texture_2d_lookup(texture_2d("uv.png")));
Color argument value from a
user-defined function

Treating the uv coordinates as colors made possible a visual representation of their change
across the surface of the object. Using the uv.png image as a texture map displays the pattern
of uv coordinates even more clearly.

Figure 9.4

tex2d_diffuse()

The position and size of the texture map image across the surface of the objects can be modified
by using the uv coordinate values as factors in an arithmetic expression. For example, the
following function, texture_2d_lookup_scaled, adds u and v scaling factors as arguments to
the texture_2d_lookup function. To keep the u and v coordinates in the range of 0.0 to 1.0,

168 MDL Handbook © 2021 NVIDIA Corporation

9.3 Mapping from spatial parameters to an image 9 Function calls as arguments

the frac function in the math standard module is called on the scaled value. The frac function
returns the fractional component of its input, keeping the values in the 0.0 to 1.0 range.

Listing 9.10

color texture_2d_lookup_scaled(

uniform texture_2d texture,

float u_scale = 1.0, Scaling factor in u direction

float v_scale = 1.0) Scaling factor in v direction

{

float3 uvw = state::texture_coordinate(0);

color result = tex::lookup_color(

texture,

float2(

math::frac(uvw.x * u_scale), Scaling of u coordinate

math::frac(uvw.y * v_scale))); Scaling of v coordinate

return result;

}

The u and v scaling factors can be added as parameters to a material which are in turn passed
as arguments to the texture_2d_lookup_scaled function:

Listing 9.11

material tex2d_diffuse_scaled(

float u_scale = 1.0, Scaling factor in u direction

float v_scale = 1.0) = Scaling factor in v direction

generic_diffuse_material(

diffuse_color: texture_2d_lookup_scaled(

texture_2d("uv.png"), u_scale, v_scale)); Arguments to user-defined
function

Rendering with scale factors of 10 for the u coordinate and 5 for the v coordinate produces
Figure 9.5:

Figure 9.5

tex2d_diffuse_scaled(

u_scale: 10,

v_scale: 5)

© 2021 NVIDIA Corporation MDL Handbook 169

9 Function calls as arguments 9.4 Coordinate spaces

Rendering with materials that display non-visual surface attributes as colors can be an im-
portant step in a production pipeline to verify assumptions about those attributes. The next
section describes the visualization of other attributes of the rendering state.

9.4 Coordinate spaces

The section “Standard functions and MDL modules” (page 162) described the world and object
coordinate spaces that are part of the rendering state. Wrapping state::transform_point in
a utility function can simplify acquiring the current position in those spaces. For example, the
following function returns the current object position:

Listing 9.12

float3 object_position() {

return state::transform_point(

state::coordinate_internal,
Transform the original point from this coordinate
system...

state::coordinate_object, ...to a resulting point in this coordinate system.

state::position());

}

Similarly, the following function returns the current world position:

Listing 9.13

float3 world_position() {

return state::transform_point(

state::coordinate_internal, Original point’s coordinate system

state::coordinate_world, New coordinate system for the point

state::position());

}

For symmetry, the following function for texture space complete the set of coordinate space
utility functions:

Listing 9.14

float3 uvw_position() {

return state::texture_coordinate(0);

}

Now these transforming functions can be combined in a single function that includes how
color values should be mapped to object as a parameter to the function. When a function re-
quires a parameter that specifies a selection among a set of possible choices, a new enum data
type can be defined that describes the set. The following code defines an enum data type called
mapping_mode with three possible values: uvw, object, and world.

170 MDL Handbook © 2021 NVIDIA Corporation

9.4 Coordinate spaces 9 Function calls as arguments

Listing 9.15

enum mapping_mode {

uvw,

object,

world

};

The new mapping_mode type can be used as the type of a parameter to a user-defined function.
Note that a user-defined enum can declare the type of a function’s parameter in the same way
as a native MDL type (like float or int). The enum type is useful for selecting among a set of
alternatives using the MDL switch statement.

switch (expression) {

case value-1 :

statements
break;

case value-2 :

statements
break;

...

case value-n :

statements
break;

}

The value of each case statement is compared in turn to the switch expression. If the two are
equal, the statements following the case statement, the case block, are executed. If only that
case block should be executed, the case block ends with a break statement, which terminates
execution of the entire switch statement. Without the break statement, the statements of the
next case block will also be executed and so forth for the entire switch statement.

For a generalized function that returns a point in one of the three spaces—texture, object, and
world—the mapping_mode enum can be used as the expression in a case statement:

Listing 9.16

float3 position(mapping_mode mode) {

float3 result;

switch (mode) {

case uvw:

result = uvw_position();

break;

case world:

result = world_position();

break;

case object:

result = object_position();

break;

}

© 2021 NVIDIA Corporation MDL Handbook 171

9 Function calls as arguments 9.4 Coordinate spaces

return result;

}

Using the position function, the material uv_as_color can be rewritten as follows to produce
a new material called uvw_space_as_color.

Listing 9.17

material uvw_space_as_color() =

generic_diffuse_material(

diffuse_color: color(position(uvw)));

Rendering with uvw_space_as_color produces Figure 9.6:

Figure 9.6

uvw_space_as_color()

However, converting the u and v coordinates to a color assumes that the coordinate values will
be in the range of 0.0 to 1.0. Coordinate values in in object and world space will be outside this
range, with negative numbers and numbers greater than 1.0. To address this, the math::frac

function can be used (as in the texture image example) to convert all numbers into the 0.0 to 1.0
range. (The fractional component of a negative number returned by math::frac is positive.)
The new function position_to_color also includes a scaling parameter.

Listing 9.18

color position_to_color(mapping_mode mode, float scale) {

return color(math::frac(scale * position(mode)));

}

172 MDL Handbook © 2021 NVIDIA Corporation

9.5 State functions and conditional expressions 9 Function calls as arguments

The mapping_mode enum can be used as a parameter to a material, as well as a scaling factor.
These material parameters are passed to the position_to_color function that provides the
value for the diffuse color:

Listing 9.19

material space_as_color(

mapping_mode mode = uvw,

float scale = 1.0) =

generic_diffuse_material(

diffuse_color: position_to_color(mode, scale));

Rendering object space coordinates as colors with a scaling factor of 4 produces Figure 9.7:

Figure 9.7

space_as_color(

mode: "object",

scale: 4)

Rendering with world space colors displays the same coordinate system for all three of the
objects:

Figure 9.8

space_as_color(

mode: "world",

scale: 4)

In the examples of this section, the coordinates of the three spaces were treated as colors, a
useful visualization tool for visualizing the non-visual attributes of geometric objects. In the
next section, coordinate values are used as the initial arguments for calculations that are more
complex than simply converting between data types.

9.5 State functions and conditional expressions

In this section, functions use the state functions of the coordinate spaces to select between two
colors for stripe and checkerboard patterns.

© 2021 NVIDIA Corporation MDL Handbook 173

9 Function calls as arguments 9.5 State functions and conditional expressions

9.5.1 Stripes

A “stripe” is defined as the regular repetition of a region at right angles to either the x or y axis.
To create a function to determine if a point is within a stripe, the geometry of the stripe can be
described in the following way:

interval

thickness

thickness

radius

radius

upper_center

lower_center

upper_bound

lower_bound

coordinate axis
direction of

Figure 9.9

The parameters interval and thickness are used to calculate the lower and upper boundaries
of the stripe near the input value f.

Listing 9.20

bool stripe(float f, float interval, float thickness) {

float position = math::abs(f);

float radius = thickness / 2.0;

float lower_center = int(position / interval) * interval;

float upper_center = lower_center + interval;

float lower_bound = lower_center + radius;

float upper_bound = upper_center - radius;

return (position < lower_bound) || (position > upper_bound);

}

Function horizontal_stripe_pattern uses stripe to determine if the y coordinate of a point
is within the region of a stripe, and returns the appropriate color that was supplied as an input
argument.

Listing 9.21

color horizontal_stripe_pattern(

mapping_mode mode=uvw,

float interval=0.2,

float thickness=0.1,

color stripe_color = color(0.0),

color bg_color = color(1.0))

{

return

174 MDL Handbook © 2021 NVIDIA Corporation

9.5 State functions and conditional expressions 9 Function calls as arguments

stripe(position(mode).y, interval, thickness)

? stripe_color

: bg_color;

}

Function horizontal_stripe_pattern provides the diffuse color in material horizontal_

stripes:

Listing 9.22

material horizontal_stripes(

color stripe_color = color(0.0),

color bg_color = color(1.0)) =

generic_diffuse_material(

diffuse_color: horizontal_stripe_pattern(

stripe_color: stripe_color,

bg_color: bg_color));

Rendering with material horizontal_stripes produces Figure 9.10:

Figure 9.10

horizontal_stripes(

stripe_color:

color(.4, .5, .3),

bg_color:

color(.8, .7, .1))

Note that material horizontal_stripes is an example of a material that hides several of the
parameters of the function it contains. All the parameters of a function can be exposed in the
material that uses it. More specific materials can be made from the generalized material in a
manner similar to the encapsulation of parameters in the creation of layered materials.

For example, the following material makes all the parameters of function horizontal_stripe_

pattern available as material parameters:

Listing 9.23

material horizontal_stripes_component(

color stripe_color = color(0.0),

color bg_color = color(1.0),

mapping_mode mode = uvw,

float interval = 0.2,

float thickness = 0.1) =

generic_diffuse_material(

diffuse_color: horizontal_stripe_pattern(

stripe_color: stripe_color,

© 2021 NVIDIA Corporation MDL Handbook 175

9 Function calls as arguments 9.5 State functions and conditional expressions

bg_color: bg_color,

mode: mode,

interval: interval,

thickness: thickness));

More specific materials can then be built from this fully parameterized component material.
For example, the following material hides all the parameters of the horizontal_stripes_

component material:

Listing 9.24

material red_stripes_on_yellow() =

horizontal_stripes_component(

stripe_color: color(.5, .2, .0),

bg_color: color(0.8, 0.7, 0.1),

interval: 0.05,

thickness: 0.0075);

Rendering with the red_stripes_on_yellow material produces Figure 9.11:

Figure 9.11

red_stripes_on_yellow()

9.5.2 Checkerboards

To construct a checkerboard pattern of two colors, A and B, the stripe function can be used to
create two stripes at right angles to each other. If a point is either in one stripe or the other, but
not both, then it is assigned color A, else it is assigned color B.

The logical condition “one or the other but not both” is called exclusive or. MDL’s logical oper-
ators can be used to define a general exclusive or function for two Boolean inputs:

Listing 9.25

bool exclusive_or(bool a, bool b) {

return (a || b) && !(a && b);

}

Implementing a checkboard pattern then simply requires determining whether a point is in the
vertical stripes (by using the x coordinate of the point) or in the horizontal stripes (by using
the y coordinate).

176 MDL Handbook © 2021 NVIDIA Corporation

9.5 State functions and conditional expressions 9 Function calls as arguments

Listing 9.26

color checkerboard_pattern(

float interval=0.2,

mapping_mode mode = uvw,

color color_1 = color(1.0),

color color_2 = color(0.0))

{

float3 point = position(mode);

float thickness = interval / 2.0;

bool vertical_stripe =

stripe(point.x, interval, thickness);

bool horizontal_stripe =

stripe(point.y, interval, thickness);

return

exclusive_or(horizontal_stripe, vertical_stripe)

? color_1

: color_2;

}

The two colors of the checkerboard function are the arguments of the checkerboard material.

Listing 9.27

material checkerboard(

color color_1 = color(0.0),

color color_2 = color(1.0),

mapping_mode mode = uvw) =

generic_diffuse_material(

diffuse_color: checkerboard_pattern(

color_1: color_1,

color_2: color_2,

mode: mode));

Using the checkerboard material produces Figure 9.12:

Figure 9.12

checkerboard(

color_1:

color(.3, .4, .5),

color_2:

color(.8, .7, .1))

The next chapter demonstrates the use of functions to implement the widely used Perlin noise
algorithm.

© 2021 NVIDIA Corporation MDL Handbook 177

9 Function calls as arguments 9.5 State functions and conditional expressions

178 MDL Handbook © 2021 NVIDIA Corporation

10 Noise
Specifying the values of material arguments with user-defined functions allows traditional
techniques to be incorporated into MDL’s paradigm of physically based rendering. As a prac-
tical example of incorporating traditional techniques, this section implements the traditional
“noise” function first developed by Ken Perlin. The functions in the following sections are a
translation from Java into MDL based on Perlin’s reference implementation in:
http://mrl.nyu.edu/˜perlin/noise/

10.1 Utility functions

The linear interpolation function in the MDL math module, lerp, has a different order for its
arguments than the lerp function used in the Java code. Rather than change the code and risk
errors that would be difficult to detect, the following function plerp—with arguments in the
same order as in the Perlin code—is used instead in the converted noise function.

Listing 10.1

double plerp(double t, double a, double b) {

return a + t * (b - a);

}

Two other utility functions in the Java code can be translated directly:

Listing 10.2

double fade(double t) {

return t * t * t * (t * (t * 6.0 - 15.0) + 10.0);

}

Listing 10.3

double grad(int hash, double x, double y, double z) {

int h = hash & 15;

double u, v;

if (h < 8)

u = x;

else

u = y;

if (h < 4)

v = y;

else {

if (h == 12 || h == 14)

v = x;

else

v = z;

© 2021 NVIDIA Corporation MDL Handbook 179

http://mrl.nyu.edu/~perlin/noise/

10 Noise 10.2 The noise function

}

return (((h & 1) == 0) ? u : -u) + (((h & 2) == 0) ? v : -v);

}

10.2 The noise function

Like the utility functions, the main noise function is also a straightforward port of the Java
code. The Java static final int permutation table is implemented as a local variable in the
MDL function. As an optimization to avoid a modulus operation, the Java code duplicates the
table of 256 permutation values. This duplication is done explicitly in the MDL local variable.

double perlin_noise(double3 pt) {

// The first 256 values of the table are duplicated explicitly here,

// but done at run-time in the Java implementation:

int[512] p(

151,160,137,91,90,15,

131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,

190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,

88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,

77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,

102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,

135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,

5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,

223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,

129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,

251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,

49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,

138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180,

151,160,137,91,90,15,

131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,

190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,

88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,

77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,

102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,

135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,

5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,

223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,

129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,

251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,

49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,

138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180);

// Find unit cube that contains point:

int

X = int(math::floor(pt.x)) & 255,

Y = int(math::floor(pt.y)) & 255,

Z = int(math::floor(pt.z)) & 255;

// Find relative x,y,z of point in cube and compute fade curves:

double

x = pt.x - math::floor(pt.x),

y = pt.y - math::floor(pt.y),

z = pt.z - math::floor(pt.z),

u = fade(x),

v = fade(y),

w = fade(z);

180 MDL Handbook © 2021 NVIDIA Corporation

10.2 The noise function 10 Noise

// The hash coordinates of the eight cube corners:

int

A = p[X]+Y, AA = p[A]+Z, AB = p[A+1]+Z,

B = p[X+1]+Y, BA = p[B]+Z, BB = p[B+1]+Z;

// Add blended results from eight corners of the cube:

return

plerp(w,

plerp(v,

plerp(u,

grad(p[AA], x, y, z),

grad(p[BA], x-1.0, y, z)),

plerp(u,

grad(p[AB], x, y-1.0, z),

grad(p[BB], x-1.0, y-1.0, z))),

plerp(v,

plerp(u,

grad(p[AA+1], x, y, z-1.0),

grad(p[BA+1], x-1.0, y, z-1.0)),

plerp(u,

grad(p[AB+1], x, y-1.0, z-1),

grad(p[BB+1], x-1.0, y-1.0, z-1.0))));

}

To use the perlin_noise function in a material, the point argument for the noise function is
created by the position function described above.

Listing 10.4

material perlin_noise_material(

color color_1 = color(0.0),

color color_2 = color(1.0),

double scale = 1.0,

functions::mapping_mode Type for parameter “space” from section "Coordinate spaces"

space = functions::object) =

let {

double3 scaled_point =

scale * functions::position(space);
Function position() from section
"Coordinate spaces"

double noise_value =

0.5 + 0.5 * perlin_noise(scaled_point);
Rescale noise value from [-1.0,1.0]
range to [0.0,1.0]

color noise_color =

math::lerp(color_1, color_2, float(noise_value));

Interpolate between the
two input colors based
on the noise value

} in

material(

surface: material_surface(

scattering: df::diffuse_reflection_bsdf(

tint: noise_color)));

Rendering with the perlin_noise_material produces Figure 10.1 (page 182):

© 2021 NVIDIA Corporation MDL Handbook 181

10 Noise 10.3 Combining calls of the noise function

Figure 10.1

perlin_noise_material(

scale: 10)

10.3 Combining calls of the noise function

The perlin_noise function developed above can be used as a component in the development
of more complex noise-based functions. The following function adds a series of noise calcula-
tions at different scales of the base noise function.

Listing 10.5

double summed_perlin_noise (

double3 point,

int level_count=4,

double level_scale=0.5,

double point_scale=2.0,

bool turbulence=false)

{

double scale = 1.0, noise_sum = 0.0;

double3 level_point = point;

for (int i = 0; i < level_count; ++i) {

double noise_value = perlin_noise(level_point);

noise_sum += noise_value * scale;

scale *= level_scale;

level_point *= point_scale;

}

if (turbulence)

noise_sum = math::abs(noise_sum);

else

noise_sum = 0.5 + 0.5 * noise_sum;

return noise_sum;

}

The noise function returns values in the range of -1.0 to 1.0. Traditionally, taking the abso-
lute value of the noise result produces an effect that has been called “turbulence.” In summed_

perlin_noise, the absolute value calculation is parameterized. If false, the noise value is set
to the range of 0.0 to 1.0.

182 MDL Handbook © 2021 NVIDIA Corporation

10.3 Combining calls of the noise function 10 Noise

Listing 10.6

material summed_noise_material (

color color_1 = color(0.0),

color color_2 = color(1.0),

double scale = 1.0,

int level_count = 4,

bool turbulence = false,

functions::mapping_mode space = functions::object) =

let {

double3 scaled_point = scale * functions::position(space);

double noise_value = summed_perlin_noise(

scaled_point, level_count, turbulence: turbulence);

color noise_color = math::lerp(color_1, color_2, float(noise_value));

} in

material(

surface: material_surface(

scattering: df::diffuse_reflection_bsdf(

tint: noise_color)));

Rendering with the summed_perlin_noise function in the range 0.0 to 1.0 produces Figure 10.2:

Figure 10.2

summed_noise_material(

scale: 3)

Rendering with the absolute value of the noise function (turbulence) produces Figure 10.3:

Figure 10.3

summed_noise_material(

scale: 3,

turbulence: true)

© 2021 NVIDIA Corporation MDL Handbook 183

10 Noise 10.3 Combining calls of the noise function

Because of the C language heritage of MDL’s imperative side, translating Perlin’s Java refer-
ence code to MDL can be done in a relatively literal way. A later chapter will explore writing
functions like Perlin’s noise using the extended language features of MDL itself.

184 MDL Handbook © 2021 NVIDIA Corporation

Part 5 Modifying geometry

© 2021 NVIDIA Corporation MDL Handbook 185

186 MDL Handbook © 2021 NVIDIA Corporation

11 Geometry in a material
The appearance of an object is not simply the result of the lighting environment and the light
interaction properties of its surface. The geometric structure of a surface—no matter what the
physical constituents of the underlying object may be—also plays a fundamental role in how
we see and categorize that object. From an early point in the history of computer graphics,
researchers understood the importance of geometric form in improving the physical plausibil-
ity of a rendered image. This recognition has typically resulted in geometric properties being
included in the parameters of a rendering system. This chapter introduces the two methods
MDL provides for modifying the geometric properties of a surface.

11.1 Background: Rendering as modeling

In the previous chapter about user-defined functions, the color of a surface was modified by
associating, or mapping, positions on that surface to color values. These colors were defined by
a mathematical function or derived from the pixels of a digital image. Instead of associating
a color to a position, displacement mapping associates a distance to each surface position. The
surface point is moved, or displaced, by this distance, typically in the direction of the surface
normal at that point, thus changing the geometry of the surface.

Fig. 11.1 – Changing the position of a surface point

In a rendering system, the displacement of a surface occurs before the calculation of the surface
color that is dependent on the spatial orientation of that surface. The displaced position of each
point may require the calculation of a new normal vector because the surface’s orientation has
also changed.

A second technique for modifying the geometric properties of a surface does not actually
change its geometric data. Instead, the normal vector that a displaced surface would have is used
for the associated point on the original surface. Because the normal vector is a critical param-
eter in the calculation of light interaction, the surface, though geometrically unchanged, has
the appearance of a surface that has been displaced. The illusion that a geometrically smooth
surface is “bumpy” gave this technique the name bump mapping.

© 2021 NVIDIA Corporation MDL Handbook 187

11 Geometry in a material 11.1 Background: Rendering as modeling

Fig. 11.2 – Modifying the normal vector defined at a surface point

Because bump mapping does not modify the geometry, the silhouette of a bump mapped ob-
ject may not agree with the shape of the surface suggested by the lighting on that surface.
However, when the scale of the detail provided by the bump mapping is small, this inconsis-
tency of the silhouette may not be visible. In that case, bump mapping may be preferred over
displacement mapping for reasons of efficiency. The additional geometric data created dur-
ing the displacement mapping process (typically a mesh of small triangles) will require more
processing time than the original, simpler surface.

11.1.1 Historical development of the two techniques

The reshaping of a surface through displacement mapping can be explained to artists new
to rendering systems using an analogy of pushing and pulling of the surface of a moldable
material like clay. Some commercial applications base their graphical interfaces on the idea that
the original geometric object can be further modified in a sculptural way. However, mapping
new normal vectors from an idealized surface may not be quite so intuitive. In the previous
section, displacement mapping is described first because it is simpler to understand than bump
mapping, and provides an introduction to a mapping from an idealized to an actual surface.

However, the research paper describing bump mapping preceded the later paper about dis-
placement mapping by six years. In James Blinn’s 1978 paper, “Simulation of wrinkled sur-
faces,9” he proposes a solution to the problem of surfaces that “sometimes look too smooth.”

To best generate images of macroscopic surface wrinkles and irregularities we
must actually model them as such. Modelling each surface wrinkle as a separate
[geometric] patch would probably be prohibitively expensive. We are saved
from this fate by the realization that the effect of wrinkles on the perceived
intensity is primarily due to the effect on the direction of the surface normal
(and thus the light reflected) rather than their effect on the position of the
surface. We can expect, therefore, to get a good effect from having a texturing
function which performs a small perturbation on the direction of the surface
normal before using it in the intensity formula.

James F. Blinn, “Simulation of wrinkled surfaces,” SIGGRAPH ’78: Proceedings of the 5th annual
conference on Computer graphics and interactive techniques, ACM, 1978, pp. 286-292.

Bump mapping may have been developed earlier than displacement mapping simply because
it is considerably easier to implement in a rendering system. Only the three components of
the normal vector for each point to be shaded had to be modified; creating additional geomet-
ric detail during rendering of sufficient resolution for fine detail would have often required
computational resources unavailable at the time.

9. https://www.microsoft.com/en-us/research/publication/simulation-of-wrinkled-surfaces/

188 MDL Handbook © 2021 NVIDIA Corporation

https://www.microsoft.com/en-us/research/publication/simulation-of-wrinkled-surfaces/
https://www.microsoft.com/en-us/research/publication/simulation-of-wrinkled-surfaces/

11.1 Background: Rendering as modeling 11 Geometry in a material

Fig. 11.3 – From James F. Blinn, “Simulation of
wrinkled surfaces,” 1978.

Figure 11.3, an illustration from Blinn’s 1978 paper, demonstrates the problem with silhouettes
in bump mapping at larger scales. The vector display image in the upper part of the illustration
was used to visualize (and, undoubtedly, to debug) the function that defines the surface from
which the new normal vectors should be calculated.

Fig. 11.4 – Illustrations from “Simulation of wrinkled surfaces”

© 2021 NVIDIA Corporation MDL Handbook 189

11 Geometry in a material 11.1 Background: Rendering as modeling

Though the title of Blinn’s paper uses the word “wrinkle,” by the second page the term “bump
function” is used to describe the calculation of the modified (or perturbed) surface normal, and
this usage is consistent throughout the rest of the paper.

In 1984, Rob Cook published a paper about a hierarchical method for creating shading func-
tions from modular components. In it, he mentions “an extension to bump maps.”

One of the more exotic uses of shade trees is an extension to bump maps called
displacement maps. Since the location is an appearance parameter, we can
actually move the location as well as perturbing the surface normal.
Displacement maps began as a solution to the silhouette problems that arise
when bump maps are used to make beveled edges. They are useful in many
situations and can almost be considered a type of modeling.

R. L. Cook, “Shade trees,” Computer Graphics (SIGGRAPH ’84 Proceedings), ACM, 1984, pp.

223-231.

The development by Cook and others of a rendering system that first divided an object into
triangles that were smaller than a pixel (micropolygons) provided numerous improvements in
rendering capability, including an efficient implementation of displacement mapping.

Fig. 11.5 – From R. L. Cook, “Shade trees,” 1984.

Most professional rendering systems today provide both displacement and bump mapping.
Artists, still mindful of efficiency, will keep the silhouette problem in mind when choosing
between the two techniques. The following sections show how they are implemented in MDL.

190 MDL Handbook © 2021 NVIDIA Corporation

11.2 Thematerial_geometry struct 11 Geometry in a material

11.2 Thematerial_geometry struct

The previous chapters have used five of the six fields of the material struct. Control of dis-
placement and bump mapping effects is provided in MDL by the sixth field of the struct, the
geometry field:

Listing 11.1

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

Light and surface
interaction

uniform color ior = color(1.0);

material_volume volume = material_volume();
Light and interior
interaction

material_geometry geometry = material_geometry(); Surface structure

};

The value of the geometry field is an instance of the material_geometry struct. The default
values of its fields produce no change to the geometric structure or opacity of the object to
which the material has been assigned.

Listing 11.2

struct material_geometry {

float3 displacement = float3(0.0); Modify surface position

float cutout_opacity = 1.0; Modify surface opacity

float3 normal = state::normal(); Modify apparent surface orientation

};

The modifications defined by the material struct’s geometry field can change the renderer
state that is used to calculate surface, volume and emissive properties, so geometric changes
occur before those calculations begin. The surface is modified in the order of the fields of the
material_geometry struct. If the surface is displaced, the value of state::normal() therefore
becomes the normal vector of the displaced surface. It is this modified value that state::normal()

will return when it is used in an expression to define a new value for the normal field of the
material_geometry struct.

The individual fields modify the renderer state in the following ways:

displacement

The displacement field defines a change to the spatial position of the surface. Note that
the displacement parameter is a vector (a value of type float3). In early rendering sys-
tems, the displacement value was typically a single numeric value that defined how far
along the normal vector the surface point should be moved. Instead of a scalar value,
the displacement field is a vector. The direction of vector specifies the direction of dis-
placement; the length of the vector defines the displacement distance. The use of vector
length as a displacement control implies that the displacement field will not be nor-

© 2021 NVIDIA Corporation MDL Handbook 191

11 Geometry in a material 11.2 The material_geometry struct

malized (with a length of 1.0), unlike other typical vector parameters. The significance
of vector length also clarifies why the default value of displacement is float3(0.0)—
its length is zero, signifying no displacement.

cutout_opacity

The effect of cutout_opacity is not “opacity” or “transparency” in the sense of light
interaction with transparent or translucent surfaces. Instead, cutout_opacity provides
the type of control required for combining rendered elements in a traditional image-
compositing framework.

The cutout_opacity field is a scalar value from 0.0 to 1.0, in which a value of 0.0 defines
a material with no opacity at all, resulting in the apparent removal of the object from the
scene. A value of 1.0 (the default) does not affect the rendering calculations defined by
the other fields of the material struct. Values between 0.0 and 1.0 combine the sur-
face color as calculated by the other fields of the material struct with the background,
proportional to the cutout_opacity value. When there are no background objects, the
material’s color is combined with black. If the rendered image includes an alpha chan-
nel, the alpha value is the result of the accumulation of opacity values of all surfaces in
that viewing direction.

Rather than interpreting cutout_opacity as defining continuous opacity values, a ren-
dering system could instead treat it effectively as a Boolean value by comparing it to a
given threshold. The rendering system could, for example, remove the object from the
scene if the cutout_opacity value does not exceed the threshold.

normal

The vector value of the normal field replaces the value of state::normal() as calculated
from the orientation of the surface. The expression can include a call to state::normal()

itself, which may have been modified by a displacement value. Bump mapping is im-
plemented in MDL by supplying the modified normal vector for the surface as the value
of this field.

The next two chapters show the effect of the three fields of the material_geometry property in
combination with the other properties of the material struct using the objects in Figure 11.6,
rendered here with simple diffuse reflection.

Fig. 11.6 – The objects used in the displacement mapping and normal perturbation examples

192 MDL Handbook © 2021 NVIDIA Corporation

12 Displacement mapping: moving a surface point
Displacing a point is implemented in a straightforward way in the material_geometry struct:
the displacement field is assigned a float3 value that defines the direction and distance in
which the surface point should be moved before the calculation of surface color begins. How
this value is determined is typically dependent upon a association of some feature of surface
position to the resulting value—the “mapping” that gives this technique its name.

12.1 Defining displacement distance with a function

The initial displacement examples of this section define a relationship between surface position
and the sine function. To map values from the sine function to a useful range for the following
materials, three custom functions will be useful.

First, the fit function takes the proportional relationship of a number between a minimum
and a maximum value and returns the corresponding number that has the same proportional
relationship between a different minimum and maximum.

Listing 12.1

float fit(

float v, Original value

float old_min, float old_max, Range of original value

float new_min, float new_max) Range of new value

{

float scale = (v - old_min) / (old_max - old_min);

return new_min + scale * (new_max - new_min);

}

The fit function can be used to map the output of the sine function—which varies from -1.0
to 1.0—to a new minimum and maximum. This second utility function, sinusoid, maps the
fractional part of the original value to a sine function. An argument defines the frequency of
the sine wave.

Listing 12.2

float sinusoid(

float f,

float frequency=1.0,

float minval=-1.0,

float maxval=1.0)

{

© 2021 NVIDIA Corporation MDL Handbook 193

12 Displacement mapping: moving a surface point 12.1 Defining displacement distance with a function

float fraction = math::frac(f); Fractional component

float angle = fraction * math::TWO_PI; Scale input to single period

float scaled = angle * frequency; Multiple periods

float sine_value = math::sin(scaled); Value of sine function

return fit(

sine_value,

-1.0, 1.0, Range of sine function

minval, maxval); Range of result

}

Displaying the output of the sinusoid function (through a translation to a graphing package)
shows the intended effects of the parametric modification of the sine function.

1.0

-1.0

0.0 1.0

sinusoid(f)

1.0

-1.0

0.0 1.0

sinusoid(f, 3, -0.5, 0.5)

1.0

-1.0

0.0 1.0

sinusoid(f, 8, 0.0, 0.5)

Fig. 12.1 – A utility function for mapping values from 0.0 to 1.0 to a sinusoid

The fit and sinusoid utilities do not call any functions specific to rendering. The following
function, uv_wave, uses as input the uv coordinates of an object. The result of state::texture_

coordinate(0) provides the inputs to two calls of function sinusoid for both the u and v
component values, stored as the first and second components of local variable p. The to calls to
sinusoid are added together for the result. Control of the separate calls to sinusoids provided
through three float2 parameters: frequency, minval and maxval.

Listing 12.3

float uv_wave(

float2 frequency = float2(1.0),

float2 minval = float2(-1.0),

float2 maxval = float2(1.0))

{

194 MDL Handbook © 2021 NVIDIA Corporation

12.1 Defining displacement distance with a function 12 Displacement mapping: moving a surface point

float3 p = state::texture_coordinate(0); Current uvw coordinate

float u_component =

sinusoid(p[0], frequency[0], minval[0], maxval[0]);
u contribution

float v_component =

sinusoid(p[1], frequency[1], minval[1], maxval[1]);
v contribution

return u_component + v_component; Combined u and v

}

Before using function uv_wave for displacement, its intended behavior can be further verified
by treating the result of uv_wave as the tint parameter in df::diffuse_reflection_bsdf.

Listing 12.4

material waves_as_grayscale (

uniform float2 frequency = float2(1.0),

uniform float2 gray_max = float2(0.5)) =

let {

color tint = color(

uv_wave(

frequency, float2(0.0), gray_max));

Grayscale value based on uv coordinates

} in material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint))); Using the uv-dependent grayscale value for tint

The components of a color parameter should range from 0.0 to 1.0, so the minval argument of
uv_wave is set to float2(0.0). With this value of zero, the maxval argument then determines
the intensity of the tint color. Rendering with only the v value defining the color variation
produces Figure 12.2:

Figure 12.2

waves_as_grayscale(

frequency:

float2(0.0, 4.0),

gray_max:

float2(0.0, 1.0))

Using both the u and v components, the gray_max parameter is adjusted to 0.5, 0.5 so that
the total of the two components never exceeds 1.0.

© 2021 NVIDIA Corporation MDL Handbook 195

12 Displacement mapping: moving a surface point 12.1 Defining displacement distance with a function

Figure 12.3

waves_as_grayscale(

frequency:

float2(4.0, 4.0),

gray_max:

float2(0.5, 0.5))

Material waves_as_displacement uses function uv_waves for displacement values. The distance

parameter defines the maximum amount of displacement from the original surface, so the ar-
guments to the minval and maxval parameters of uv_wave are -distance and distance.

Listing 12.5

material waves_as_displacement (

uniform float2 frequency = float2(1.0),

uniform float2 distance = float2(0.1),

color tint = color(0.7)) =

let {

float displacement_distance =

uv_wave(frequency, -distance, distance);
Calculate uv-based displacement
distance

float3 displaced_normal =

state::normal() * displacement_distance;
Scale surface normal by
displacement distance

} in material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint)),

geometry: material_geometry(

displacement: displaced_normal));
Usemodified surface normal in
material_geometry instance

Duplicating the frequency parameters from the previous renderings of waves_as_grayscale

and using 0.1 for the non-zero distance produces Figure 12.4 (page 197) and Figure 12.5 (page 197).

196 MDL Handbook © 2021 NVIDIA Corporation

12.1 Defining displacement distance with a function 12 Displacement mapping: moving a surface point

Figure 12.4

waves_as_displacement(

frequency:

float2(0.0, 4.0),

distance:

float2(0.0, 0.1))

In Figure 12.5, both the u and v components contribute to the calculation of the displacement
distance:

Figure 12.5

waves_as_displacement(

frequency:

float2(4.0, 4.0),

distance:

float2(0.075, 0.075))

Note that a value of 0.0 for either frequency or distance for the u or v component effectively
disables the effect of that component in the resulting displacement. However, a frequency

value of 0.0 still requires the execution of the math::frac and math::sin functions in func-
tion sinusoid. It is therefore tempting to extend sinusoid to handle that special case (and
removing the pedagogical local variables):

Listing 12.6

float sinusoid2(float f,

float frequency=1.0,

float minval=-1.0,

float maxval=1.0) {

return

frequency == 0.0 Check if the calculation is unnecessary

? 0.0 If not (the frequency is zero), return 0.0

: fit(math::sin(

math::frac(f) * math::TWO_PI * frequency),

-1.0, 1.0, minval, maxval);

...else call the “fit”
function

}

© 2021 NVIDIA Corporation MDL Handbook 197

12 Displacement mapping: moving a surface point 12.2 Level-of-detail considerations

Rendering systems can integrate MDL for appearance definition in a variety of ways. In the
rendering of these images, the check for a zero value in sinusoid2 only reduced the rendering
time to 98% of the original version. This suggests that the calculation of the diffuse surface
color requires most of the rendering time. Performing the test again with images that are four
times larger in resolution reinforces this assumption: sinusoid2 provides even less of an im-
provement, taking 99% of the time of the original version. For higher resolution images, the
increased complexity of sinusoid2 provides no real benefit in decreasing rendering time.

The pitfalls in any attempt to improve the performance of MDL materials are the same as
those in traditional programming. It may not be obvious which part of a rendering system
will benefit from a proposed optimization of a calculation in a material. For any material that
will be part of a shared library which will be maintained and extended over time, the possible
lack of clarity in optimized material code—and the subsequent difficulty in the addition of
new features and the debugging of those features—can be too high a cost for the benefit of a
potentially limited decreased in rendering time.

12.2 Level-of-detail considerations

The last section cautioned against premature optimization—the “root of all evil” according
to Donald Knuth’s famous warning.10 However, the rendering of the waves_as_grayscale

version only took 57% of the time required by wave_as_displacement. During production,
animation tests of composition and timing may not require the fine detail that displacement
mapping provides.

The following material, waves, uses the uv_wave function for either displacement or shading
based on a Boolean parameter. If use_displacement is false, the tint argument is scaled
based on the uv_wave function. This allows the intended displacement of an object to be visible
during tests that do not benefit from displacement’s increase in complexity and the resulting
increase in rendering time.

Listing 12.7

material waves (

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0),

color tint = color(0.7),

bool use_displacement = true) = Displacement or color choice

let {

color modified_tint =

use_displacement ?

tint :

tint * uv_wave(frequency, float2(0.1), float2(0.5));

Surface color

10. http://en.wikiquote.org/wiki/Donald_Knuth#Computer_Programming_as_an_Art_.281974.29

198 MDL Handbook © 2021 NVIDIA Corporation

http://en.wikiquote.org/wiki/Donald_Knuth#Computer_Programming_as_an_Art_.281974.29

12.2 Level-of-detail considerations 12 Displacement mapping: moving a surface point

float displacement_distance =

use_displacement ?

uv_wave(frequency, -distance, distance) :

0.0;

float3 displaced_normal =

state::normal() * displacement_distance;

Modification of normal vector

} in material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: modified_tint)), Color based on value of “use_displacement” parameter

geometry: material_geometry(

displacement: displaced_normal));

In this first rendering using material waves, the displace parameter is set to true (the default).

Figure 12.6

waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10.0, 10.0),

tint:

color(0.6, 0.4, 0.0),

use_displacement: true)

Setting the displace parameter to false, the pattern of displacement is still visible by a modi-
fication of the surface value in the material, providing compositional information without the
overhead of the actual displacement.

Figure 12.7

waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10.0, 10.0),

tint:

color(0.6, 0.4, 0.0),

use_displacement: false)

© 2021 NVIDIA Corporation MDL Handbook 199

12 Displacement mapping: moving a surface point 12.3 Separating displacement from the control of light interaction

In material waves, displacements are shown by scaling the color value proportional to the
distance of the displacement. In a production context, a representation of displacement should
clearly be a stand-in for displacement and not the intended surface color. The wave material
demonstrates the utility of such multiple behaviors encapsulated in one material by using a
Boolean parameter to specify the parametric changes required by those behaviors.

12.3 Separating displacement from the control of light interaction

In the previous materials, the type of light interaction of the surface is a constant, defined
within the material. This section demonstrates how material a material that defines surface
and volume properties can be combined with a material that defines displacement.

Material glossy defines the surface property but does not specify any modification in the
geometry property.

Listing 12.8

material glossy (

color tint = color(0.7),

float roughness = 0.3) =

material (

surface: material_surface (

scattering: df::simple_glossy_bsdf (

tint: tint,

roughness_u: roughness)));

Glossy BSDF

Rendering the scene with glossy produces Figure 12.8:

Figure 12.8

glossy(

tint:

color(0.6, 0.4, 0.0))

In material waves, the value of the surface_property is an explicit constructor for the material-surface

struct. As described in “Reusing parts of existing materials” (page 100), components of a ma-
terial can be used as the field values of other materials. Using the dot operator, the surface

property of material glossy_waves is assigned the surface value of an instance of material
glossy.

200 MDL Handbook © 2021 NVIDIA Corporation

12.3 Separating displacement from the control of light interaction 12 Displacement mapping: moving a surface point

Listing 12.9

material glossy_waves (

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0),

color tint = color(0.7),

float roughness = 0.3,

bool use_displacement = true) =

let {

color modified_tint =

use_displacement ?

tint :

tint * uv_wave(frequency, float2(0.1), float2(0.5));

float displacement_distance =

use_displacement ?

uv_wave(frequency, -distance, distance) :

0.0;

float3 displaced_normal =

state::normal() * displacement_distance;

Duplicated structure
frommaterial
“waves”

} in material (

surface: glossy(

modified_tint, roughness).surface,
The “surface” property of an instance of
“glossy”

geometry: material_geometry(

displacement: displaced_normal));

The Boolean displace parameter from waves has been duplicated in material glossy_waves.
Rendering with displacement produces Figure 12.9:

Figure 12.9

glossy_waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10.0, 10.0),

tint:

color(0.6, 0.4, 0.0),

use_displacement: true)

Turning displacement off—using the color modification behavior instead—produces Figure
12.10 (page 202). The non-displaced surface is also rendered with the glossy material, but
scaled by the displacement value.

© 2021 NVIDIA Corporation MDL Handbook 201

12 Displacement mapping: moving a surface point 12.4 A parameterized displacement material

Figure 12.10

glossy_waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10, 10),

tint:

color(0.6, 0.4, 0.0),

use_displacement: false)

In material glossy_waves, the intuitive similarity between creating a material instance and
calling a function without named parameters has been emphasized syntactically. The surface

value could also have been defined in this way:

Listing 12.10

surface: glossy(

tint: modified_tint,

roughness: roughness).surface

The typical advice about consistency also applies in the implementation of materials, espe-
cially during library design. Even when positional arguments would be possible, this book
typically uses named arguments to clarify the field names of the struct for which argument
values are being provided. (See material glossy_round_bumps (page 220) for another example
of positional arguments.)

12.4 A parameterized displacement material

A further separation of the calculation of light interaction from displacement is possible. A
parameter of a material can be an instance of another material. Like material glossy_waves,
material waver uses the dot operator to extract components of a struct instance. However,
waver defines a parameter of type material, named surface_and_volume, from which the dot
operator is used to extract the values of its ior, surface and volume fields.

Listing 12.11

material waver (

material surface_and_volume, Material as an argument

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0)) =

let {

float displacement_distance =

uv_wave(frequency, -distance, distance);
Calculate displacement distance

float3 displaced_normal =

state::normal() * displacement_distance;
Scale surface normal by
displacement distance

202 MDL Handbook © 2021 NVIDIA Corporation

12.4 A parameterized displacement material 12 Displacement mapping: moving a surface point

} in material (

ior: surface_and_volume.ior,

surface: surface_and_volume.surface, Use surface component of argument

volume: surface_and_volume.volume, Use volume component of argument

geometry: material_geometry(

displacement: displaced_normal)); Define displacement using the scaled surface
normal

Material glossy_yellow_waves uses material waver; an instance of the glossy material is the
value of the surface_and_volume parameter of waver.

Listing 12.12

material glossy_yellow_waves(

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0)) =

waver(

surface_and_volume:

glossy(color(0.6, 0.4, 0.0), 0.3),
Create an instance of “glossy” material for
use by “waver” material

distance: distance,

frequency: frequency);

Rendering with glossy_yellow_waves produces Figure 12.11:

Figure 12.11

glossy_yellow_waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10, 5))

Material glass waves uses the material subsurface_scattering from “Subsurface scattering
as a model of glass” (page 69) but with the same displacement parameters as glossy_yellow_

waves.

© 2021 NVIDIA Corporation MDL Handbook 203

12 Displacement mapping: moving a surface point 12.4 A parameterized displacement material

Listing 12.13

material glass_waves (

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0)) =

waver(An instance of material “waver” is the entire body of material “glass_waves”

surface_and_volume:

subsurface_scattering(

transmission_color: color(0.8, 0.9, 1.0),

scattering_color: color(0.1, 0.1, 0.3),

transmission_distance: 2.0),

Instance of
“subsurface_scattering”
material that provides the
surface and volume properties
to material “waver”

distance: distance,

frequency: frequency);

Rendering with glass_waves produces Figure 12.12:

Figure 12.12

glass_waves(

distance:

float2(0.02, 0.02),

frequency:

float2(10, 5))

A further level of abstraction is possible, however. The following material, shaper, only takes
two arguments of type material. One argument provides surface and volume properties; the
other argument provides the geometric property.

Listing 12.14

material shaper (

material surface_and_volume, Material argument for surface and volume properties

material geometry) = Material argument for geometry property

material (

ior: surface_and_volume.ior,

surface: surface_and_volume.surface,

volume: surface_and_volume.volume,

Surface and volume properties frommaterial
argument

geometry: geometry.geometry); Geometry property frommaterial argument

204 MDL Handbook © 2021 NVIDIA Corporation

12.5 Defining displacement distance with an image 12 Displacement mapping: moving a surface point

Using material shaper, the subsurface_scattering and waves_as_displacement materials
can be combined.

Listing 12.15

material green_glass_waves (

uniform float2 distance = float2(0.1),

uniform float2 frequency = float2(1.0)) =

shaper (An instance of material “shaper” is the entire body of material “green_glass_waves”

surface_and_volume:

subsurface_scattering (

transmission_color: color(0.1, 0.4, 0.2),

scattering_color: color(0.1, 0.1, 0.1),

transmission_distance: 1.0),

Volume and color properties

geometry:

waves_as_displacement (

frequency: frequency,

distance: distance));

Geometry property

Rendering with material green_glass_waves produces Figure 12.13:

Figure 12.13

green_glass_waves(

distance:

float2(0.04, 0.04),

frequency:

float2(20, 10))

Materials that can combine the components of other materials can be used as the framework
for graphical applications in which artists use preexisting materials in the creation of new
appearance models.

12.5 Defining displacement distance with an image

In the materials introduced in “Mapping from spatial parameters to an image” (page 166), the
texture images provided color data for use as the tint parameter of df::diffuse_reflection_

bsdf. The pixel data contained in an image can also be used for other types of material input,
for example, to describe displacement distance. The association of sampled pixel values as a
displacement parameter uses the same uv coordinate structure and lookup function as the last
chapter did for an image’s color values.

© 2021 NVIDIA Corporation MDL Handbook 205

12 Displacement mapping: moving a surface point 12.5 Defining displacement distance with an image

To use an image for displacement values, Figure 12.14 shows the intensities of a one-dimensional
slice of pixel values interpreted as distance, rather than as color. An image which represents
distance in this way is often called a height map.

Fig. 12.14 – Visualizing pixel intensity as height

Given the geometric interpretation of pixel intensity, Figure 12.15 suggests an approximation
of a curve that passes through the center of each pixel.

Fig. 12.15 – Defining an approximation to a curve using the pixel intensity interpreted as height

Images of higher resolution can represent a greater level of geometric detail, as in Figure 12.16.
Usually the the uv coordinates are not exactly centered on a pixel; in this case, the renderer’s
mechanism for sampling digital images provide an intermediate value in the same way an
image is sampled when a color value is required.

Fig. 12.16 – Increased resolution in the height map enables finer geometric detail

Figure 12.17 (page 207) is a rendering in perspective of a geometric model of woven fibers.
The gray values in the image are proportional to the distance of each point to the plane of the
weave.

206 MDL Handbook © 2021 NVIDIA Corporation

12.5 Defining displacement distance with an image 12 Displacement mapping: moving a surface point

Fig. 12.17 – Rendering using depth as a grayscale value

In Figure 12.18, the fiber model was rendered with the camera oriented at 90◦ to the plane of
the weave to produce a height map. No perspective transformation was used in rendering,
and the image has been cropped so that it can can be repeated without any visible seams at the
borders.

Fig. 12.18 – Orthographic rendering for a tiled
displacement map (filename: weave_depth_hires.png)

Figure 12.18 is used in material diffuse_weave as the source for the let variable texture_

color:

Listing 12.16

material diffuse_weave (

uniform float2 scale = float2(1.0),

uniform float displace = 0.0,

color tint = color(0.7)) =

© 2021 NVIDIA Corporation MDL Handbook 207

12 Displacement mapping: moving a surface point 12.5 Defining displacement distance with an image

let {

color texture_color =

functions::texture_2d_lookup_scaled(

texture_2d("weave_depth.png"),

scale[0], scale[1]);

Get color value from texture map using a
function developed in the last chapter

float scaled_displace =

displace * math::average(texture_color);
Scale displacement length by the
average of the color’s component

float3 displaced_normal =

state::normal() * scaled_displace;
Modify the normal vector by the scaled
displacement length

} in material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint)),

geometry: material_geometry(

displacement: displaced_normal)); Usemodified normal in the geometry property

The function texture_2d_lookup_scaled developed in “Mapping from spatial parameters to
an image” (page 166) can also be used in a material that will use the color value for displace-
ment, instead of as a color value. Images for use in mapping functions are handled in a consis-
tent manner; how that value is used will vary from material to material.

Rendering with material diffuse_weave produces Figure 12.19.

Figure 12.19

diffuse_weave(

displace: 0.1,

scale:

float2(1, 1),

tint:

color(0.72, 0.75, 0.7))

The displacement map has been designed so that it can be used as a tile. The scale parameter
of material is passed to the u_scale and v_scale parameters of functions::texture_2d_

lookup_scaled. Scaling by 8 in the u direction and 4 in the v direction produces Figure 12.20
(page 209).

208 MDL Handbook © 2021 NVIDIA Corporation

12.5 Defining displacement distance with an image 12 Displacement mapping: moving a surface point

Figure 12.20

diffuse_weave(

displace: 0.05,

scale:

float2(8, 4),

tint:

color(0.72, 0.75, 0.7))

The diffuse_weave material uses df::diffuse_reflection_bsdf for its surface value. Like
the glossy_waves (page 201) and waver (page 202) materials, the reflection property of diffuse_

weave can be generalized by using a material instance as one of its parameters.

Listing 12.17

material weave (

uniform float2 scale = float2(1.0),

uniform float displace = 0.0,

material surface_property = material()) =
Material instance to provide the surface
property

let {

color texture_color =

functions::texture_2d_lookup_scaled(

texture_2d("weave_depth.png"),

scale[0], scale[1]);

float scaled_displace =

displace * math::average(texture_color);

float3 displaced_normal =

state::normal() * scaled_displace;

} in material (

surface: surface_property.surface, Use the surface property of the material instance

geometry: material_geometry(

displacement: displaced_normal));

Now that the surface property has been parameterized, a material can reuse the glossy ma-
terial from “Separating displacement from the control of light interaction” (page 200). The
gold_weave material uses the weave material for its implementation, for which the the glossy

material provides its surface property.

© 2021 NVIDIA Corporation MDL Handbook 209

12 Displacement mapping: moving a surface point 12.5 Defining displacement distance with an image

Listing 12.18

material gold_weave(

uniform float2 scale = float2(1.0),

uniform float displace = 0.0) =

weave(An instance of the “weave” material

scale: scale,

displace: displace,

surface_property:

glossy(An instance of the “glossy” material

tint: color(0.6, 0.4, 0.0),

roughness: 0.3));

Using the gold_weave material produces Figure 12.21.

Figure 12.21

gold_weave(

displace: 0.015,

scale:

float2(60, 30))

210 MDL Handbook © 2021 NVIDIA Corporation

13 Bumpmapping: perturbing a surface normal
So far, the features of the MDL material struct have been easily related to intuitions from every-
day experience—the interaction of light and objects in MDL is modeled on the physical world.
Even the displacement mapping of the previous sections can be thought of as the manipulation
of a pliable substance like clay.

However, with bump mapping the intuitive world will be left behind. In bump mapping, an
artifact of the rendering system—the representation of surface orientation by a vector—is the
entity being manipulated, a programming construct for which there is no corresponding object
or process in the physical world.

Without an intuitive base, an incremental approach with visual verification—similar to the
color replacement of displacement values in the previous sections—will be helpful in develop-
ing the new intuitions required for materials that bend the normal vector.

13.1 Background: Working with a local coordinate system

In the previous sections, displacement mapping only required scaling the normal vector—
simply by multiplying the normal vector by a number—to produce the displacement value
for the material_geometry struct. No other information was required. However, to bend the
normal vector in a controlled way requires that it be rotated, but around which axis? How can
the normal vector be consistently manipulated across the varying orientation of the surface?

To define a consistent context for normal vector manipulations, renderings systems typically
define a local coordinate system using some parameter of the surface. A typical choice is the uv
coordinate system, which defines a u direction and a v direction everywhere throughout the
texture space. For any point on the surface, three vectors are therefore available: the normal
vector, the u vector and the v vector. These three vectors can define a coordinate system local to
that point. Bump mapping calculations can use this consistent framework everywhere across
the surface.

A rendering system using this mechanism for the definition of a local coordinate system will
provide some way of accessing the texture vectors. In MDL, the u and v vectors are defined
by two state functions: state::texture_tangent_u() and state::texture_tangent_v. These
two vectors define a two-dimensional coordinate system for any tangent vector that passes
through that point, called a tangent space. Combining the tangent vectors with the normal vec-
tor produces a three-dimensional coordinate system defined for every point on the surface.

Figure 13.1 (page 212) displays a representation of the local coordinate system across the sur-
face of a sphere.

© 2021 NVIDIA Corporation MDL Handbook 211

13 Bumpmapping: perturbing a surface normal 13.1 Background: Working with a local coordinate system

Fig. 13.1 – A local coordinate system based on texture space is defined everywhere on the object’s surface

As Figure 13.1 implies, the tangent vectors allow any bump mapping calculations to assume
that there is consistent coordinate system everywhere across the surface. In essence, consider-
ations of surface curvature have been removed.

A further simplification is possible. Rather that considering the three-dimensional space de-
fined by the three local coordinate vectors and calculating rotations in that three-dimensional
space, the u and v vectors can be considered separately. The u vector and the normal vector
form a plane; the normal vector can be modified in this plane by adding it to the result of scal-
ing the tangent. This modification is consistent across the surface, given that it is based on the
plane formed by components of the local coordinate system.

n
o
rm

a
l

tangent

1. Initial state of normal
and tangent vectors

n
o
rm

a
l

tangent

2. Scale the tangent
vector

n
o
rm

a
l

tangent

3. Add the scaled
tangent vector to the

normal

n
o
rm

a
l

tangent

no
rm

al

m
od

if
ie

d

4. Normalize the
normal vector

Fig. 13.2 – Modifying the normal vector by scalar multiplication and vector addition

Modifying the normal vector in this way using the two tangents produces two vectors. Adding
these two vectors together and normalizing the result produces the modified normal vector.

Other methods for modifying the surface normal are possible (for example, rotating the normal
vector around both tangent vectors and adding the result), but this planar technique will allow
the development of a relatively simple utility function in “Modifying the normal vector within
the circle” (page 217). First, however, it will be useful to simplify the texture space as well.

212 MDL Handbook © 2021 NVIDIA Corporation

13.2 Tiling the texture space 13 Bumpmapping: perturbing a surface normal

13.2 Tiling the texture space

Bump mapping is often used for patterns of fine detail repeated across a surface. Repetition
can be implemented as a modification of the uv texture space.

Function fractional_uv multiples the u and v coordinates by the scale factor arguments; func-
tion math::frac truncates these values so they remain the range 0.0 to 1.0.

Listing 13.1

float2 fractional_uv(float u_scale, float v_scale) {

float3 uvw = state::texture_coordinate(0);

return float2(

math::frac(uvw.x * u_scale), Scale u coordinate

math::frac(uvw.y * v_scale)); Scale v coordinate

}

In a manner similar to the tests of displacement values, the scaling of the uv coordinates can
be implemented as a material:

Listing 13.2

material scaled_uv(

float u_scale = 1.0,

float v_scale = 1.0) =

let {

float2 uv = fractional_uv(u_scale, v_scale); Scaled uv coordinates

color tint = color(uv[0], uv[1], 0.0); Create color from scaled uv coordinates

} in

material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint))); Use color derived from uv coordinates

Figure 13.3 (page 214) and Figure 13.4 (page 214) show the results of different scaling factors
for the fractional_uv function.

© 2021 NVIDIA Corporation MDL Handbook 213

13 Bumpmapping: perturbing a surface normal 13.3 Defining a circle within a tile

Figure 13.3

scaled_uv(

u_scale: 8,

v_scale: 4)

Figure 13.4

scaled_uv(

u_scale: 80,

v_scale: 40)

The simple arithmetic involved in the fractional_uv function can hide what it in fact pro-
duces: a tiling of the surface in which each tile defines a unit square in uv space. The next step
is to put a circle in each of those tiles.

13.3 Defining a circle within a tile

The virtual tiles in texture space created by the fraction_uv function provide a frame of ref-
erence to define a circle centered in the tile. The circle in Figure 13.5 (page 215) has a radius of
0.5. Any uv point is inside the circle if the distance to the center is less than or equal to 0.5.

214 MDL Handbook © 2021 NVIDIA Corporation

13.3 Defining a circle within a tile 13 Bumpmapping: perturbing a surface normal

[0,0] [1,0]

[0,1] [1,1]

[0.5,0.5]

[u,v]

Fig. 13.5 – The uv coordinate in a circle within the texture tile

In the spirit of the previous tests that converted the uv coordinate to a color, the scaled_uv_

circle_color function displays the uv value inside the circle. On the outside of the circle the
outside_color argument is used instead.

Listing 13.3

color scaled_uv_circle_color(

float u_scale, float v_scale, color outside_color)

{

float2 uv = fractional_uv(u_scale, v_scale);

float2 center = float2(0.5, 0.5); Center of circle

if (math::distance(uv, center) < 0.5) { Is distance from center greater than
radius?

return color(uv[0], uv[1], 0.0); If so, use uv color inside circle...

} else {

return outside_color; ...else use value of outside_color parameter.

}

}

The scaled_uv_circle material uses scaled_uv_circle_color for the definition of the tint

field:

© 2021 NVIDIA Corporation MDL Handbook 215

13 Bumpmapping: perturbing a surface normal 13.3 Defining a circle within a tile

Listing 13.4

material scaled_uv_circle(

float u_scale = 1.0,

float v_scale = 1.0,

color outside_color = color(0.7)) =

let {

color tint = scaled_uv_circle_color(Calculate uv color based on circle

u_scale, v_scale, outside_color);

} in

material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint))); Use color derived from the uv position

Figure 13.6 and Figure 13.7 show the results of rendering with scale_uv_circle.

Figure 13.6

scaled_uv_circle(

u_scale: 8,

v_scale: 4)

Figure 13.7

scaled_uv_circle(

u_scale: 80,

v_scale: 40)

216 MDL Handbook © 2021 NVIDIA Corporation

13.4 Modifying the normal vector within the circle 13 Bumpmapping: perturbing a surface normal

13.4 Modifying the normal vector within the circle

The examples of the previous section visualize a technique for determining uv values within
a repeated circular pattern. This technique can now be used to determine where and how the
normal vector should be modified for an example of bump mapping.

The geometric structure to be simulated with bump mapping will be a section of a sphere,
called a spherical cap. Figure 13.8 shows the normal vectors at a cross section of a cap.

Fig. 13.8 – The normal vectors for a spherical cap

To simulate a spherical cap with bump mapping, the normal vectors of the cap can be associ-
ated with a scalar value. Figure 13.9 shows one possible strategy, in which a value from -0.5 to
0.5 is associated with the normal vectors from one side of the cap to the other.

-0.5 0.0 0.5

Fig. 13.9 – Normal vectors modified across the range of 0.0 to 1.0

How can these vectors be constructed? Figure 13.10 shows the varying components of the
spherical cap’s normal vectors. Note that the horizontal component increases in size in pro-
portion to its distance from 0.0.

-0.5 0.0 0.5

Fig. 13.10 – Components of the vectors representing the surface normal vectors of the spherical cap

The u and v tangent vectors, both of length 1.0, can be scaled by the u and v components of the
current point. Their sum is a vector from the center of the circle to the current uv point.

© 2021 NVIDIA Corporation MDL Handbook 217

13 Bumpmapping: perturbing a surface normal 13.4 Modifying the normal vector within the circle

[0,0] [1,0]

[0,1] [1,1]

[0.5,0.5]

[u,v]

new tangent u

new tangent v

ta
ngen

t s
um

Fig. 13.11 – Sum of tangents scaled by uv components

Adding the tangent sum vector to the normal vector will resulting in bending the normal in
a manner that approximates a spherical surface. The following function, round_bump_normal,
uses the technique of Figure 1.2 (page 212), to modify state::normal(), but only if the uv
point is within or on the boundary of the circle.

Listing 13.5

float3 round_bump_normal(

float bump_scale, float u_scale, float v_scale)

{

float2 uv = fractional_uv(u_scale, v_scale);

float2 center = float2(0.5, 0.5);

float3 result;

if (math::distance(uv, center) <= 0.5) { Is the point inside the circle?

float2 center_offset = uv - center; Then: Make directional offset from center

float3 new_tangent_u =

state::texture_tangent_u(0) * center_offset[0];
Scale tangent in u
direction

float3 new_tangent_v =

state::texture_tangent_v(0) * center_offset[1];
Scale tangent in v
direction

218 MDL Handbook © 2021 NVIDIA Corporation

13.4 Modifying the normal vector within the circle 13 Bumpmapping: perturbing a surface normal

float3 tangent_sum =

new_tangent_u + new_tangent_v;
Sum the two scaled tangent vectors

float3 scaled_tangent_sum =

tangent_sum * bump_scale;
Scale tangent sum by “bump_scale” argument

float3 bent_normal =

state::normal() + scaled_tangent_sum;
Add tangent vector to normal vector

float3 normalized =

math::normalize(bent_normal);
Normalize vector

result = normalized; The result for points inside the circle

} else { Is the point outside the circle?

result = state::normal(); Then: The result is the unmodified surface normal

}

return result;

}

In the following material, round_bumps, the round_bump_normal function defines the modi-
fied normal in the material_geometry property. Like the waver material in “A parameterized
displacement material” (page 202), the surface property of round_bumps has also been param-
eterized.

Listing 13.6

material round_bumps(

material surface_material, Material providing “material_surface” property

float bump_scale = 1.0,

float u_scale = 1.0,

float v_scale = 1.0) =

let {

float3 modified_normal = round_bump_normal(

bump_scale, u_scale, v_scale);
Modified normal created by function
“round_bump_normal”

} in

material(

surface: surface_material.surface,
Extract the “surface” property from the
“surface_material” argument

geometry: material_geometry (

normal: modified_normal)); Using the modified normal in “material_geometry”

The body of the following material, glossy_round_bumps, is the material round_bumps, us-
ing the glossy material (from “Separating displacement from the control of light interaction”
(page 200)) as the surface_material argument.

© 2021 NVIDIA Corporation MDL Handbook 219

13 Bumpmapping: perturbing a surface normal 13.4 Modifying the normal vector within the circle

Listing 13.7

material glossy_round_bumps(

float bump_scale = 1.0,

float u_scale = 1.0,

float v_scale = 1.0) =

round_bumps(

glossy(color(0.6, 0.4, 0.0)), Material providing “material_surface” component

bump_scale, u_scale, v_scale); Parameters to “round_bump_normal” function

Rendering with glossy_round_bumps produces Figure 13.3 (page 214).

Figure 13.12

glossy_round_bumps(

u_scale: 8,

v_scale: 4)

Though the glossy reflections of the sphere in Figure 13.12 makes apparent visual sense, there
is something wrong with the square. The lighting environment consists of two light sources,
one above and to the left, the other above and to the right. What is the source of the light
reflected from the lower part of the spherical caps?

As another test of glossy_round_bumps, Figure 13.13 orients the square directly toward the
virtual camera and distributes the circular regions evenly across its face.

Figure 13.13

glossy_round_bumps(

u_scale: 4,

v_scale: 4)

220 MDL Handbook © 2021 NVIDIA Corporation

13.4 Modifying the normal vector within the circle 13 Bumpmapping: perturbing a surface normal

Now the glossy reflections on the square in Figure 13.13 (page 220) make visual sense. The
orientation of the square in Figure 13.12 (page 220) is deceptive; it is tilted over much more
than the image suggests. Because the geometry is not modified—only the normal vectors have
changed—the self-shadowing of the surface that would be expected does not exist. Figure
13.12 (page 220) demonstrates the primary problem with bump mapping at larger scales, when
geometric modification is necessary.

Figure 13.14 shows a more typical use of bump mapping at a finer level of detail.

Figure 13.14

glossy_round_bumps(

u_scale: 80,

v_scale: 40)

As with many rendered effects, the lighting environment is crucial for convincing bump map-
ping. Figure 13.15 removes the light source from the left; in various regions of the sphere the
effect may appear to be more convincing.

Figure 13.15

glossy_round_bumps(

u_scale: 80,

v_scale: 40)

The bump_scale argument provides a way of inverting the apparent geometry of the bumps.
For example, Figure 13.16 (page 222) multiples the computed normal vector by -1.0—in effect,
turning the bumps inside out.

© 2021 NVIDIA Corporation MDL Handbook 221

13 Bumpmapping: perturbing a surface normal 13.5 Deriving normals from a height map image

Figure 13.16

glossy_round_bumps(

u_scale: 80,

v_scale: 40,

bump_scale: -1.0)

13.5 Deriving normals from a height map image

Using an image to define bump mapping requires a more complicated calculation than dis-
placement mapping. In displacement mapping, each point in an image defines, for that corre-
sponding point in the uv space on the surface, the distance that point is to be moved from its
original position, implemented as a scalar multiplication of the surface normal.

However, bump mapping depends upon the orientation of the surface—a three-dimensional
problem that cannot be defined by a scalar value derived from an image. Instead, a triangle of
three nearby points in an image—again treating pixel intensity as height—can define a plane
that a new normal vector will represent.

13.5.1 A two-dimensional simplification of surface orientation

The same decomposition into the separate calculations of the u and v vectors applied in the pre-
vious sections can be used image-based bump mapping. Figure 13.17 shows the two-dimensional
slice of the surface implied by pixel values, including the normal vectors of each segment.

Fig. 13.17 – Defining normal vectors by interpreting pixel intensity as height

As in the case of displacement mapping, increasing the number of pixels in bump-map image
improves the rendered detail of the surface—not by the increase of geometric detail, but by
improved representation of surface that the normal vectors represent.

222 MDL Handbook © 2021 NVIDIA Corporation

13.5 Deriving normals from a height map image 13 Bumpmapping: perturbing a surface normal

Fig. 13.18 – Increased image resolution improves the detail implied by the derived normal vectors

13.5.2 The normal vector of a line segment

Figure 13.18 suggests that the curve implied by a set of samples in an image can be treated as
a series of line segments that connect the sample points. A simple geometric property of the
slope of a line will be useful here. Slope is defined as the ratio of the change in the y direction
to the change in the x direction. If the slope of a line is y/x, then the slope of the line 90◦ to the
given line is x/-y. Figure 13.19 suggest how that relationship results in a 90◦ rotation of the
rectangle, and therefore the diagonal within it.

X

Y

-Y

X

Fig. 13.19 – The negative reciprocal of the slope of a line is a line 90◦ to it

This simple relationship will permit the efficient creation of normal vectors from line segments.
Creating the rectangle from image pixels is the problem to solve next.

13.5.3 Constructing the normal vector

As in the case of displacement mapping with an image, pixels will be interpreted as rectan-
gles in which their height is proportional to intensity. The “center” of each pixel will be the
endpoints of the line segment.

© 2021 NVIDIA Corporation MDL Handbook 223

13 Bumpmapping: perturbing a surface normal 13.5 Deriving normals from a height map image

Given these two points, the x and y lengths of Figure 13.18 (page 223) can be calculated. Given
the variable aspect ratios of texture images, it is useful to normalize the inter-pixel length be-
tween 0.0 and 1.0, or within the range of texture space.

For an image with width w, the width of a pixel in texture space is 1/w. Similarly, for an image
of height h, the height of a pixel in texture space is 1/h. In this case, however, the difference
between “width” and “height” of an image can be ignored; like the previous bump mapping
examples, the two components of the modified normal will be calculated separately. The dis-
tance in Figure 13.20 will be handled in the same way in both the u and v directions.

The y component of Figure 13.18 (page 223) is calculated by sampling the texture at the two
points and taking the difference of the values. Figure 13.20 implies that the exact value of
a pixel is used to determine the difference, but the distance is arbitrary (and will become a
parameter in the final bump-mapping material).

difference

distance

Fig. 13.20 – The distance between the sample points and the difference
between the value of the samples, considered geometrically

The distance and difference values define the lengths of the sides of a rectangle in Figure 13.21.

difference

distance

Fig. 13.21 – The rectangular region defined by the extent of the implicit edge
between sample points

Given the calculation of the distance and difference and the position of the sample point on
the left, Figure 13.22 (page 225) shows the construction of the corresponding rectangle rotated
90◦.

224 MDL Handbook © 2021 NVIDIA Corporation

13.5 Deriving normals from a height map image 13 Bumpmapping: perturbing a surface normal

difference

distance

difference

distance

Fig. 13.22 – Constructing the rotated rectangle as suggested by Figure 13.20 (page 224)

The diagonal of the second rectangle in Figure 13.23 is the normal vector of the original seg-
ment.

difference

distance

difference

distance

Fig. 13.23 – The vector that is normal to the implicit edge between samples

The surface normal and tangent vectors shown in Figure 13.24 (page 226) will provide the
necessary framework to apply this construction method to the arbitrary orientation of points
on a three-dimensional surface.

© 2021 NVIDIA Corporation MDL Handbook 225

13 Bumpmapping: perturbing a surface normal 13.5 Deriving normals from a height map image

state::normal()

state::texture_tangent_u(0)

or

state::texture_tangent_v(0)

Fig. 13.24 – The state functions that provide the vectors for
the construction of the new normal vector

13.5.4 Implementing the construction method

This section develops four functions for use in two materials that implement bump mapping
based on an image. These functions follow the logic of the previous section and serve as an
example of translating geometric intuitions into and MDL material.

In “Defining displacement distance with an image” (page 205), material diffuse_weave used
the function texture_2d_lookup_scaled. This function returned the color value of the current
point in texture space as defined by state::texture_coordinate(0). However, creating the
new normal vector for bump mapping also requires that texture values near the current point
can be found. Acquiring values from a texture is also called sampling the texture. Function
texture_2d_sample allows arbitrary u and v values to define the location in the texture to be
sampled.

Listing 13.8

color texture_2d_sample(

uniform texture_2d texture,

float2 texture_scale = float2(1.0), Scaling factor for texture repetition

float2 uv = float(0.0)) Explicit uv coordinates as parameter

{

float2 scaled_uv = math::frac(uv * texture_scale);

return tex::lookup_color(texture, scaled_uv);

}

The next functions, nearby_texture_differences uses texture_2d_sample to acquire the
values for the current (center) point and the points that are near it, as defined by the distance

parameter.

226 MDL Handbook © 2021 NVIDIA Corporation

13.5 Deriving normals from a height map image 13 Bumpmapping: perturbing a surface normal

Listing 13.9

float2 nearby_texture_differences(

uniform texture_2d texture,

float2 distance, Distance from current point in u and v directions

float2 texture_scale)

{

float3 uvw = state::texture_coordinate(0); Current point in texture space

float2 center_point = float2(uvw.x, uvw.y);

float2 u_point = center_point + float2(distance[0], 0);

float2 v_point = center_point + float2(0, distance[1]);

uv coordinates for
current and nearby
points

float center_value = math::average(

texture_2d_sample(texture, texture_scale, center_point));

float u_value = math::average(

texture_2d_sample(texture, texture_scale, u_point));

float v_value = math::average(

texture_2d_sample(texture, texture_scale, v_point));

Lookup
texture
values at the
three points

float u_difference = u_value - center_value;

float v_difference = v_value - center_value;
Find differences

return float2(u_difference, v_difference);
Combine two differences as a value of
type “float2”

}

With the distance between the sample points and the difference between the values of the
samples, the normal vector and tangent vectors can be modified to produce the new normal
vector at right angles to the segment. Figure 13.25 shows the relationship of the distance and
difference to the normal and tangent vectors.

state::normal()

state::texture_tangent_u(0)

or

state::texture_tangent_v(0)

normal vector scaled by distance

and inverted
scaled by difference

tangent vector

modified normal vector

Fig. 13.25 – Use of distance and difference to scale the normal and tangent functions

© 2021 NVIDIA Corporation MDL Handbook 227

13 Bumpmapping: perturbing a surface normal 13.5 Deriving normals from a height map image

The bend_normal function implements the vector scaling and addition shown in Figure 13.25
(page 227).

Listing 13.10

float3 bend_normal(

float3 tangent, Tangent vector in u or v

float distance, Distance between sample points

float difference) Difference between the values of the sample points

{

float3 scaled_normal =

state::normal() * distance;
Scale vertical vector by horizontal factor

float3 bend_direction =

tangent * -difference;
Scale horizontal vector by negated vertical factor

float3 result =

math::normalize(

scaled_normal + bend_direction);
Add the modified vectors and normalize

return result;

}

With all the component functions in place, the modify_normal_from_texture function com-
bines the normal bending from the u and v directions to define the new normal.

Listing 13.11

float3 modify_normal_from_texture(

uniform texture_2d texture,

float2 pixel_distance,

float2 texture_scale)

{

float2 dimensions =

float2(tex::width(texture), tex::height(texture));
Width and height of
texture

float2 texture_distance =

pixel_distance / (dimensions * texture_scale);
Convert from pixels to
distance in texture space

float2 difference =

nearby_texture_differences(

texture, texture_distance, texture_scale);

Find the difference of values in
u and v directions

float3 u_bend =

bend_normal(

state::texture_tangent_u(0),

texture_distance[0], difference[0]);

Result of bending normal in u direction

228 MDL Handbook © 2021 NVIDIA Corporation

13.5 Deriving normals from a height map image 13 Bumpmapping: perturbing a surface normal

float3 v_bend =

bend_normal(

state::texture_tangent_v(0),

texture_distance[1], difference[1]);

Result of bending normal in v direction

float3 result =

math::normalize(u_bend + v_bend);
Add and normalize the bent vector components

return result;

}

The texture_bump material uses modify_normal_from_texture in the material_geometry

property, parameterizing the material to be used for the surface property and the texture that
defines the bump mapping.

Listing 13.12

material texture_bump (

material surface_material, Parameterize surface property

uniform texture_2d texture, Parameterize texture for bumpmapping

float2 pixel_distance = float2(1.0),

float2 texture_scale = float2(1.0)) =

material(

surface: surface_material.surface,

geometry: material_geometry (

normal: modify_normal_from_texture(

texture, pixel_distance, texture_scale)));
Call function to calculate
modified normal

The glossy_texture_weave_bump material uses an instance of the texture_bump material that
encapsulates the image from “Defining displacement distance with an image” (page 205) for
the bump-mapping texture with the the glossy material for the surface property.

Listing 13.13

material glossy_texture_weave_bump(

color tint = color(0.7),

float roughness = 0.5,

float2 pixel_distance = float2(1.0),

float2 texture_scale = float2(1.0)) =

texture_bump(

glossy(tint, roughness),

texture_2d("weave_depth.png"),

pixel_distance,

texture_scale);

Instance of material “texture_bump”

© 2021 NVIDIA Corporation MDL Handbook 229

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

Rendering with glossy_texture_weave_bump produces Figure 13.26.

Figure 13.26

glossy_texture_weave_bump(

tint:

color(0.6, 0.4, 0.0),

roughness: 0.3,

texture_scale:

float2(20, 10))

A larger repetition of the texture map produces Figure 13.27.

Figure 13.27

glossy_texture_weave_bump(

tint:

color(0.6, 0.4, 0.0),

roughness: 0.3,

texture_scale:

float2(100, 50))

13.6 Using normal vectors encoded in an image

In the previous section, new normal vectors were derived from the surface implied by treating
pixel intensities as geometric height. In a technique called normal mapping, the red, green, and
blue components of image pixels encode the x, y, and z components of normal vectors directly.
The required calculations are simple enough—interpret the color as a vector—that this section
also explores extended ways of visualizing normal vectors and useful ways to modify the
vectors encoded by the image.

13.6.1 The format of a normal map

No obviously ideal way to encode vectors in an image suggests itself; rendering applications
vary in how a normal map image should be structured. A popular representation uses red
for x, green for y, and blue for z. The range of the components of a normalized vector—from
-1.0 to 1.0—is represented by values that vary from zero to the maximum value of the integer
channel types (255 for 8-bit images, 65535 for 16-bit images). For images containing floating-
point data, a value of 1.0 will typically be used as the maximum. This encoding allows the
image be readily displayed with a variety of computer graphics applications, but requires that
the channel values are scaled to -1.0 to 1.0 before the vector is constructed.

230 MDL Handbook © 2021 NVIDIA Corporation

13.6 Using normal vectors encoded in an image 13 Bumpmapping: perturbing a surface normal

Normal map as an image Red as x component Green as y component Blue as z component

Fig. 13.28 – A widely used format for storing normal vector data in an image

The red and green components show the orientation of the vector component—increasing to
the right for x and upward for y. The blue component represents z, the vector component
pointing outward from the plane of the image. Geometrically, this component cannot be less
than 0.0 or the surface would not be visible, lying beyond the “horizon” of what the virtual
camera can “see.” The blue component therefore has no value less that 0.5 (which will become
0.0 when converted), resulting in an image with no dark values, unlike the full intensity range
of the red and green channels.

The three vector components of the texture space are all normalized—have a length of 1.0—so
applying the normal map consists of scaling the three components by the color channels and
adding these scaled components together to create the new normal vector.

Fig. 13.29 – The samples from a normal map define new normal vectors

13.6.2 Visualizing the vectors of the normal map

The previous sections used the math::average function to acquire a single value from the
colors of a texture image. A texture can also be read with other lookup functions based on the
type of data to be sampled from the texture. To acquire the three components of the vectors
defined by a normal map image, the tex::lookup_float3 function will return values of type
float3. If the renderer supports reading negative values from a texture and the normal map
has stored the vector components directly (as an image of floating-point components in the

© 2021 NVIDIA Corporation MDL Handbook 231

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

range of -1.0 to 1.0), then little further processing must be done beyond reading texture values
and assigning them to the normal field of the material_geometry property.

In the case of the typical normal map format described above, the pixel components must be
converted from the range of the data type’s minimum and maximum values. However, the
texture lookup functions transform, or normalize, the texture values to the range of 0.0 to 1.0 as
defined by the data type.

For values in the range 0.0 to 1.0, the conversion to -1.0 to 1.0 is trivial. Given c as the value of
an image channel, converting c to the -1.0 to 1.0 range is simply:

(2.0 * c) - 1.0

However, a more general solution would not make assumptions about the range of the original
pixel data. The fit function (page 193), developed for displacement mapping, can also be used
to parameterize the original range of the image as it is transformed to -1.0 to 1.0:

fit(channel-value, channel-minimum, channel-maximum, -1.0, 1.0)

However, the conversion of an RGB value to a vector is not an operation on single values, but
on triplets—in terms of MDL’s type system, a conversion from a float3 to a float3. Another
fit function can define the same transformation for float3 values:

Listing 13.14

double fit(

double v, Original value

double old_min, double old_max, Range of original value

double new_min, double new_max) Range of new value

{

double scale = (v - old_min) / (old_max - old_min);

return new_min + scale * (new_max - new_min);

}

There are now two functions named “fit,” but no ambiguity results when the fit function is
called. The identify of a function is determined not simply by its name, but also by the types
of the function’s arguments and the type of the value the function returns.

Using the float3 version of function fit, a new texture lookup function, texture_2d_lookup_

float3, includes rescaling the sample values based on parameters of the function.

Listing 13.15

float3 texture_2d_lookup_float3(

uniform texture_2d texture,

float2 texture_scale = float2(1.0),

float sample_min = 0.0,

float sample_max = 1.0,
Range of values in texture

232 MDL Handbook © 2021 NVIDIA Corporation

13.6 Using normal vectors encoded in an image 13 Bumpmapping: perturbing a surface normal

float new_min = 0.0,

float new_max = 1.0)
Rescaled range for result

{

float3 uvw = state::texture_coordinate(0);

float2 uv = float2(uvw.x, uvw.y) * texture_scale;

float3 sample = tex::lookup_float3(texture, uv);

Lookup sample in texture

float3 result = fit(

sample,

float3(sample_min), float3(sample_max),

float3(new_min), float3(new_max));

Rescale the sample value, using
“float3” constructors with the “float”
parameters

return result;

}

Function bump_normal includes the original range of values in the normal map as parameters
sample_min and sample_max. Their default values implement the common normal map format
of the 0.0 to 1.0 range. The red, green, and blue values scale the u tangent, the v tangent and the
surface normal vector. However, this function also provides for optional scaling of the normal
vector by the blue channel. (The visual effect this provides is shown in “Modifying normal
map components” (page 238).)

Listing 13.16

float3 bump_normal(

uniform texture_2d texture,

float bump_scale = 1.0,

bool scale_vector_z = true, Allow control of scaling by the z component

float2 texture_scale = float2(1.0),

float sample_min = 0.0,

float sample_max = 1.0) {

float3 sample =

texture_2d_lookup_float3(

texture, texture_scale,

sample_min, sample_max,

-1.0, 1.0);

Lookup sample in texture

float3 normal =

state::normal() * (scale_vector_z ? sample.z : 1.0);

Surface normal
vector, optionally
scaled

float3 tangent_u =

state::texture_tangent_u(0) * sample.x * bump_scale;
Scaled u tangent
vector

float3 tangent_v =

state::texture_tangent_v(0) * sample.y * bump_scale;
Scaled v tangent
vector

float3 result =

math::normalize(

normal + tangent_u + tangent_v);

Vector components combined and
normalized

© 2021 NVIDIA Corporation MDL Handbook 233

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

return result;

}

Given the possible variations in the encoding of a normal map (and the need to debug an im-
plementation), it can be very useful to visually verify its interpretation as a field of vectors. The
utility function color_from_normal transforms the normal to world coordinates and scales the
vector components to the 0.0 to 1.0 range. The function also provides for using its output as a
value for light intensity, so that the visibility of the vector representation does not depend upon
lighting in the scene. However, the light emission value is the radiant exitance of the surface, so
it must be scaled by π, provided by the MDL constant math::PI.

Listing 13.17

color color_from_normal(

float3 normal = float3(1.0),

bool normal_color_as_emission = true)

{

float3 object_normal = state::transform_normal(

state::coordinate_internal,

state::coordinate_world,

normal);

Transform normal to world
coordinate system

color result = color(0.5 + 0.5 * object_normal);
Rescale normal components
from [-1.0,1.0] to [0.0,1.0]

if (normal_color_as_emission)

result /= math::PI;
Convert color to radiant exitance

return result;

}

The color_from_normal function provides the value of a temporary variable in the normal_

as_color material. The Boolean parameter normal_color_as_emission defines the internal
parameters of the scattering and emission values. If emission is used, there is not reflectance;
if reflectance is used, there is no emission.

Listing 13.18

material normal_as_color(

float3 normal = float3(1.0),

uniform bool normal_color_as_emission = true) =
A switch to define the vector to
be interpreted as reflectance or
emission

let {

color normal_color = color_from_normal(

normal, normal_color_as_emission);
Normal converted to color

} in

material(

surface: material_surface(

234 MDL Handbook © 2021 NVIDIA Corporation

13.6 Using normal vectors encoded in an image 13 Bumpmapping: perturbing a surface normal

scattering: df::diffuse_reflection_bsdf(

tint: normal_color_as_emission

? color(0.0)

: normal_color),

If the material is emissive, there is no
diffuse color

emission: material_emission (

emission: df::diffuse_edf(),

intensity: normal_color_as_emission

? normal_color

: color(0.0))));

If the material is reflective, there is no
emission

Finally, this seemingly endless march of nested utility functions is at an end. The next section
will define materials and use them to make some pictures.

13.6.3 Using the normal map

The parameters of the normal_map_bump material control the behavior of its assembly of all the
component functions developed in the previous section. This is a general-purpose material, in
which the surface property is provided as an input of type material, the parameter surface_

material.

Listing 13.19

material normal_map_bump(

float bump_scale = 1.0,

float2 texture_scale = float2(1.0),

bool scale_vector_z = true,

material surface_material = material(),

uniform texture_2d texture = texture_2d(),

float sample_min = 0.0,

float sample_max = 1.0,

uniform bool use_normal_for_color = false,

uniform bool normal_color_is_emission = true) =

Control of the display of the
normal vector as a color for
testing purposes

let {

float3 modified_normal = bump_normal(

texture, bump_scale, scale_vector_z, texture_scale,

sample_min, sample_max);

New normal vector
based on texture
map

} in

material(

surface:

use_normal_for_color

? normal_as_color(

modified_normal,

normal_color_is_emission).surface

: surface_material.surface,

Choose between the
“normal_as_color” function or
“surface” property of the
“surface_material” parameter

geometry:

material_geometry (

© 2021 NVIDIA Corporation MDL Handbook 235

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

normal:

use_normal_for_color

? state::normal()

: modified_normal));

Choose between the default or modified surface
normal

By providing explicit values to some of its parameters, the following normal_map_bump ma-
terial can be partially instantiated to define the more specialized material glossy_normal_map_

weave. This specialization resembles the mechanism in functional programming whereby a
new function is created from an existing one by providing explicit arguments to a subset of the
parameters of the original function, a process known as currying.

Listing 13.20

material glossy_normal_map_weave(

float bump_scale = 1.0,

float2 texture_scale = float2(1.0),

bool scale_vector_z = true,

uniform bool use_normal_for_color = false,

uniform bool normal_color_is_emission = true) =

Control of the display of the
normal vector as a color for
testing purposes

normal_map_bump(Thematerial body consists only of a call to the “normal_map_bump”material

bump_scale: bump_scale,

texture_scale: texture_scale,

scale_vector_z: scale_vector_z,

surface_material: glossy_yellow(),

texture: texture_2d("weave_normal_map.tif"),

sample_min: 0.0,

sample_max: 1.0,

Explicit parameters that specialize
“normal_map_bump”

use_normal_for_color: use_normal_for_color,

normal_color_is_emission: normal_color_is_emission);

Figure 13.30 and Figure 13.31 (page 237) show the use of the two modes of visually verifying
the values of the normal map—as reflectance or emission.

Figure 13.30

glossy_normal_map_weave(

use_normal_for_color: true,

normal_color_is_emission: false,

texture_scale:

float2(4, 4))

236 MDL Handbook © 2021 NVIDIA Corporation

13.6 Using normal vectors encoded in an image 13 Bumpmapping: perturbing a surface normal

Figure 13.31

glossy_normal_map_weave(

use_normal_for_color: true,

normal_color_is_emission: true,

texture_scale:

float2(4, 4))

The explicit parameter values provided by glossy_normal_map_weave to normal_map_weave

provide its specific color and glossy reflection effect.

Figure 13.32

glossy_normal_map_weave(

texture_scale:

float2(4, 4))

Figure 13.33 shows another example of the more typical use case of a bump map in which a
finer level of detail will hide the geometric inconsistency of the profile.

Figure 13.33

glossy_normal_map_weave(

texture_scale:

float2(40, 20))

© 2021 NVIDIA Corporation MDL Handbook 237

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

13.6.4 Modifying normal map components

One of the parameters passed through the chain of component functions in the glossy_normal_

map_weave provides an intuitive method of controlling how high above the surface its apparent
geometric variation extends.

Figure 13.34

glossy_normal_map_weave(

texture_scale:

float2(4, 4),

bump_scale: 0.2)

The Boolean parameter scale_vector_z controls whether or not the scale of the z vector com-
ponent (blue in the normal map) is used in the calculation of the new normal. Figure 13.35
shows variation as the vector components are scaled, most noticeable at either ends of the arc.

Using all three components of the normal vector Scaling only by x (red) and y (green) components

Fig. 13.35 – The simulated geometry with and without using the z (blue) component of the normal map

Removing the effect of the z component—providing a value of false for scale_vector_z—
reduces the height at the edges of the rounded areas, implying a flatter surface than in Figure
13.35.

Figure 13.36

glossy_normal_map_weave(

texture_scale:

float2(4, 4),

bump_scale: 0.25,

scale_vector_z: false)

238 MDL Handbook © 2021 NVIDIA Corporation

13.6 Using normal vectors encoded in an image 13 Bumpmapping: perturbing a surface normal

The inclusion of scaling by z varies in its visual effect based on scale. Figure 13.37 and Figure
13.38 vary only by the value of scale_vector_z.

Figure 13.37

glossy_normal_map_weave(

texture_scale:

float2(40, 20),

bump_scale: 0.25,

scale_vector_z: true)

Figure 13.38

glossy_normal_map_weave(

texture_scale:

float2(40, 20),

bump_scale: 0.25,

scale_vector_z: false)

As with the other visual effects produced by bump and normal mapping, but unlike the careful
calculations of light inter-reflection, the parameterization of scaling by z has no actual corre-
lation in the physical world. Techniques like this can be used in MDL to explore design pos-
sibilities; the later practical business of creating plans for the fabrication of the objects being
designed will require a conversion to some geometric expression that is acceptable in the world
of milling machines and 3D printing.

© 2021 NVIDIA Corporation MDL Handbook 239

13 Bumpmapping: perturbing a surface normal 13.6 Using normal vectors encoded in an image

240 MDL Handbook © 2021 NVIDIA Corporation

14 Geometric profiles
The description of the material_geometry struct (page 191) mentioned that early rendering
systems only allowed displacement of the surface in the direction of the normal vector. In these
systems, the length of the normal vector was either ignored or the vector was normalized to have
a length of 1.0. An additional scalar value defined how far the surface should be displaced in
the direction of the normal vector.

In MDL, the position of a displaced surface point takes both the direction of the modified
surface normal as well as its length into account. Because displacements are not limited to
movement along the surface normal, concave shapes can be developed as displacements of
simple surfaces.

This chapter develops the idea of a geometric profile, a two-dimensional curve that defines sur-
face displacement in a material. Profiles are a useful way to explore the flexible capabilities of
MDL’s displacement mechanism as well as other aspects of material development.

14.1 A framework for vector displacement

Before developing a material for displacement, it will first be useful to define a material to assist
in testing and debugging the modification of a surface that displacements make possible.

14.1.1 Utility functions and their names

Previous chapters have developed functions that serve as components in the development
of more complex functions and as field values in the properties of materials. The following
functions simplify references to the u and v coordinates of a given texture space. Function u

returns the first coordinate of the texture space:

Listing 14.1

float u(int texture_space=0) {

return state::texture_coordinate(texture_space).x;

}

Function v only varies from u in the component of the texture coordinate it returns:

Listing 14.2

float v(int texture_space=0) {

return state::texture_coordinate(texture_space).y;

}

Note the dangerously simple names of these two functions. It is easy to imagine another ma-
terial for which such functions would be useful and for which the material author provided
functions of the same name. This redundancy would result in an error when the new functions
were defined.

© 2021 NVIDIA Corporation MDL Handbook 241

14 Geometric profiles 14.1 A framework for vector displacement

So far, the materials and functions of the previous chapters have, for simplicity, ignored the
MDL feature that organizes names of user-defined components. Modules and packages provide
a hierarchical scheme for MDL’s implementation of the traditional programming language
notions of namespaces and the scope of variables. Modules and packages enable an author of
one MDL source file to use a name without fear that the same name defines a different MDL
component in another source file—or, at least, that such a collision occurs at the more readily
corrected level of the module and packages names themselves.

14.1.2 A material for drawing grids

The strategy for the grid-drawing material developed by this section depends upon the dis-
tance from the current point in texture space to a grid line. The function near_grid_value

determines the one-dimensional case—when a value falls within a certain distance from a
multiple of the grid cell size. The distance determines the thickness of the lines in the grid.

Listing 14.3

bool near_grid_value(

float f, float cell_count, float thickness, float edge=1)

{

float thick = thickness == 0.0

? 0.05 / cell_count

: thickness;

A thickness value of 0.0 triggers the calculation of a
default based on cell_count

thick *= edge;

float nearest_value = math::floor((f + thick) * cell_count) / cell_count;

return (f >= nearest_value - thick) && (f <= nearest_value + thick);

}

The combination of near_grid_value in both the u and v directions determines the location of
grid lines.

Listing 14.4

bool in_grid_line(

float2 cell_count, float2 thickness, int texture_space, float edge=1)

{

return

near_grid_value(u(texture_space),

cell_count[0], thickness[0], edge)

|| near_grid_value(v(texture_space),

cell_count[1], thickness[1], edge);

}

The function grid_color uses in_grid_line to determine if a point is part of the grid or the
background, with the two colors provided as parameters to the function.

242 MDL Handbook © 2021 NVIDIA Corporation

14.1 A framework for vector displacement 14 Geometric profiles

Listing 14.5

color grid_color(

float2 cell_count = float2(4.0, 4.0),

color line_color = color(0.0),

//color line_color = color(u(), v(), 0.0),

color bg_color = color(1.0),

float2 thickness = float2(0.0),

int texture_space = 0)

{

/*

color result = bg_color;

if (in_grid_line(cell_count, thickness, texture_space))

result = line_color;

else if (in_grid_line(cell_count, thickness, texture_space, 1.5))

result = color(0);

return result;

*/

return in_grid_line(cell_count, thickness, texture_space)

? line_color

: bg_color;

}

The following material, grid, is simply a wrapper for the calculation of the grid, providing the
resulting color as the tint field of df::diffuse_reflection_bsdf.

Listing 14.6

material grid(

float2 cell_count = float2(4.0, 4.0),

color line_color = color(0.0),

//color line_color = color(u(), v(), 0.0),

color bg_color = color(0.7),

float2 thickness = float2(0.0),

int texture_space = 0) =

let {

color tint = grid_color(

cell_count, line_color, bg_color, thickness,

texture_space);

Calculate tint using the
grid_color function

} in material(

surface: material_surface(

scattering:

df::diffuse_reflection_bsdf(tint: tint)));
Simple diffuse reflection using
the grid color

© 2021 NVIDIA Corporation MDL Handbook 243

14 Geometric profiles 14.1 A framework for vector displacement

14.1.3 A template material for vector displacement

The grid material demonstrates a frequent strategy in recent chapters. A function is developed
(for material grid, function grid_color) that defines all the calculations required for a field in
a material’s property or distribution function.

Similarly, a template material for testing the effects of displacement can make the calculation
of the displacement vector external to the material, in other words, provided as the value of a
function. The surface property is extracted from the material instance that is an argument to
the vector displacement material.

point
surface

displaced

property
surface

vector_displacement

vector

instance
material

Fig. 14.1 – The vector_displacement material provides
arguments that define a modified surface point and a surface

property

In material vector_displacement, the default value for the displaced surface point is float(0.0)

– that is, no displacement. As a default, the grid profile serves as a good default for testing the
way in which the displacement alters the texture space of the surface.

Listing 14.7

material vector_displacement(

float3 displacement = float3(0.0), Displacement vector for the surface point

material material_for_surface = grid()) = Material providing the surface property

material(

thin_walled: true,

surface:

material_for_surface.surface,
Extract surface property from thematerial passed as
an argument

geometry:

material_geometry(displacement));
Displace surface based on the vector passed as
an argument

As an example of the use of the the vector_displacement material, imagine that each surface
point is moved by the same amount in the direction of the surface normal vector.

244 MDL Handbook © 2021 NVIDIA Corporation

14.1 A framework for vector displacement 14 Geometric profiles

Fig. 14.2 – All surface normal vectors are scaled by the same amount

Function move_up is the simplest possible modification of the surface normal vector—it only
scales the length of state::normal().

Listing 14.8

float3 move_up(float scale) {

return scale * state::normal();

}

Material raise provides arguments to an instance of the vector_displacement material. Func-
tion move_up provides the new normal vector; the surface property of the grid material pro-
vides raise with its surface property.

Listing 14.9

material raise(

float scale = 0.0,

float2 grid_count = float2(4.0)) =

vector_displacement(

move_up(scale),

grid(grid_count));

Instance of the vector_displacement material

Figure 14.3 and Figure 14.4 use the grid material for the square on the left and the raise

material for the square on the right. In Figure 14.3, the raise material is used with a scale

value of 0.0, resulting in no displacement of the square. In Figure 14.4, the raise material uses
a scale value of 0.2.

Fig. 14.3 – Material raise with a scale value of 0.0 Fig. 14.4 – Material raise with a scale value of 0.2

Figure 14.3 and Figure 14.4 serve as a model for the rendered images in this chapter. In each
rendered image, the square on the left is rendered with the grid material and shows the texture
map scaling used for both objects. The square on the right is rendered with a material based
on the vector_displacement material.

© 2021 NVIDIA Corporation MDL Handbook 245

14 Geometric profiles 14.2 Maintaining a linear texture space

14.2 Maintaining a linear texture space

As a surface point is transformed by a displacement vector, the texture space—the u and v
coordinates—is maintained. For certain transformations, the resulting texture space will only
be stretched or shrunk.

For example, an isosceles triangle (a triangle with two sides of equal length) can be defined by
scaling the surface normal vector.

0.0 0.5 1.0

Fig. 14.5 – Scaling the surface normal vector to form a triangular surface

Assuming the triangle fits within a range of 0.0 to 1.0, the triangle_displacement function
defines the height of the triangle for a given point between 0.0 and 1.0 as a function of the
triangle’s height.

Listing 14.10

float3 triangle_displacement(float f, float height) {

float length =

(f <= 0.5)

? fit(f, 0.0, 0.5, 0.0, height)

: fit(f, 0.5, 1.0, height, 0.0);

return length * state::normal();

}

The triangle_displacement function defines the value of the displaced_normal argument
for the triangle material.

Listing 14.11

material triangle(float height=0.5) =

vector_displacement(

triangle_displacement(u(), height));

In Figure 14.6 (page 247), the square on the left is rendered with the grid material. The square
on the right is rendered with the triangle material using the grid material (with the same
parameters) for the surface property and the triangle_displacement function to define the
displacement. (In the renderings in this chapter, the material listed to the right of the image is
used by the square on the right; the grid material is used by the square on the left.)

246 MDL Handbook © 2021 NVIDIA Corporation

14.2 Maintaining a linear texture space 14 Geometric profiles

Fig. 14.6 – A linear relationship between the default and displaced texture
space of a square

triangle(

height: 0.25)

However, a shape like an isosceles triangle is a special case. Though the texture space is
stretched in the triangular object, the stretching is proportional (or linear) throughout—the
width of a grid cell is the same in the displaced surface. In other simple shapes, this propor-
tional relationship will not be produced by a simple scaling of the surface normal vector.

For example, a circular profile can be defined in a range of 0.0 to 1.0 by scaling by the y value
determined from the Pythagorean theorem.

Listing 14.12

float3 circle_linear_vector(float f, float radius = 0.5) {

float x = fit(f, 0.0, 1.0, -0.5, 0.5); x between -0.5 and 0.5 for the unit circle

float y_2 = radius * radius - x * x; y2 from the Pythagorean theorem

float y = (y_2 >= 0.0) ? math::sqrt(y_2) : 0.0; y clamped to a positive value

return y * state::normal(); y scales the surface normal vector

}

Figure 14.7 shows how the default value of 0.5 for the radius argument maps points on the
segment to points on the circle:

0.0 0.5 1.0

Fig. 14.7 – Scaling the surface normal vector to form a semicircular shape

© 2021 NVIDIA Corporation MDL Handbook 247

14 Geometric profiles 14.2 Maintaining a linear texture space

In material circle_linear, the circle_linear_vector function defines the scaling of the sur-
face normal vector. A 20 by 20 grid material defines the surface property.

Listing 14.13

material circle_linear(float height=0.5)

= vector_displacement(

circle_linear_vector(u(), height),

grid(float2(20, 20)));

Rendering with material circle_linear produces the shape on the right in Figure 14.8. The
grid is stretched unevenly across the surface.

Fig. 14.8 – A distorted texture space produced by scaling the normal vector

circle_linear()

A radius value of 0.25 for material circle_linear produces Figure 14.9.

Fig. 14.9 – Inconsistent mapping between linear and non-linear texture spaces

circle_linear(

height: 0.25)

In order to create an undistorted mapping of the texture space, a different relationship between
distances in texture space and distance along the curve must be defined. New surface points
must be produced by both scaling and rotating the surface normal vector. For a semicircle,
distances in the 0.0 to 1.0 range of the texture space must be mapped to proportional distances
along the semicircular curve.

248 MDL Handbook © 2021 NVIDIA Corporation

14.2 Maintaining a linear texture space 14 Geometric profiles

Listing 14.14

float3 circle_nonlinear_vector(float f, float height) {

float x1 = fit(f, 0, 1, -1, 1); Position in -1.0→ 1.0 range for f

float angle = fit(f, 0, 1, math::PI, 0); Proportional angle on a semicircle

float x2 = math::cos(angle);

float y2 = math::sin(angle);
Determine the coordinates of the point on the semicircle

float3 displacement_vector =

y2 * state::normal()

+ (x2 - x1) * state::texture_tangent_u(0);

Map the vector to the plane of the
normal and the tangent in u

return height * displacement_vector; Scale the resulting vector by the height

}

The mapping of points by the circle_nonlinear_vector function is demonstrated in Figure
14.10:

0.0 0.5 1.0

Fig. 14.10 – Proportional mapping of points on a line to a semicircle

The circle_nonlinear material uses the circle_nonlinear_vector to define the displace-
ment vector.

Listing 14.15

material circle_nonlinear(

float height = 0.5,

float2 count = float2(20, 20))

= vector_displacement(

circle_nonlinear_vector(u(), height),

grid(count));

© 2021 NVIDIA Corporation MDL Handbook 249

14 Geometric profiles 14.3 Concavities and overhangs

Figure 14.11 uses material circle_nonlinear for the object on the right. Note that the scaling
of the grid in u is π/2 times the scaling in v, resulting in grid cells of equal width and height
(as measured along the circle with a radius of 0.5).

Fig. 14.11 – Adjusting the uv mapping for a circular shape

circle_nonlinear(

height: 0.5,

count:

float2(31.416, 20))

Careful calculations of the mapping of points from a geometric primitive to a new shape pro-
duced by displacement can maintain the linearity of the texture space. Determining this rela-
tionship is similar to the process of parameterizing a curve, so that a value from 0.0 to 1.0—the
curve’s parametric value—defines proportional points along the curve. The previous materials
of this chapter are all dependent on a particular geometry and texture space to enable that pa-
rameterization. However, the same process underlies a variety of commercial applications, in
which the apparent clay-like modeling in the user interface is simply the calculation of a set of
displacement vectors that modify a simpler surface.

14.3 Concavities and overhangs

The last section showed how limiting the modification of the surface normal vector to scaling
alone could distort the texture space. Simple scaling also restricts the types of geometric struc-
tures that displacements can create. For example, the normal vector intersects the cross section
of the surface in Figure 14.12 twice.

Fig. 14.12 – A scaled normal vector can intersect some shapes more
than once

250 MDL Handbook © 2021 NVIDIA Corporation

14.3 Concavities and overhangs 14 Geometric profiles

Happily, developing a parameterization for a two-dimensional curve can also create surfaces
that cannot be defined by only scaling the normal vector.

14.3.1 The bubble profile

To demonstrate the combined problem of texture distortion and the representation of over-
hanging parts, this section presents a curve nicknamed a bubble profile, defined by a circle inter-
sected by a line segment. Given a segment length of 1.0, a relationship between the circular arc
and the segment can be defined by specifying the radius of the circle and the circle’s “height,”
the distance of the circle’s center to the segment:

0.2
height

0.4
radius

1.00.0

0.5

Fig. 14.13 – A bubble profile is defined by the circle’s radius and the height of
the circle’s center

A radius of 0.5 and a height of 0.0 produces a semicircle:

0.0
height0.5

radius
1.00.0

0.5

Fig. 14.14 – A bubble radius of 0.5 and a height of 0.0 creates a
semicircle

© 2021 NVIDIA Corporation MDL Handbook 251

14 Geometric profiles 14.3 Concavities and overhangs

Negative values for the height parameter produce smaller arcs. Varying the height and radius
from 0.0 to 0.5 produces a family of circular arcs and segments at the arc’s endpoints.

-0.2
height

0.4
radius

1.00.0

0.5

Fig. 14.15 – A negative bubble height produces a circular arc smaller than a
semicircle

A material can create a bubble shape with displacement vectors by defining a proportional
relationship between points on a planar polygon and points on the bubble:

1.00.0

Fig. 14.16 – Mapping points in a line segment to evenly spaced points in the
bubble

In the material, some points will remain on the polygon while others will form the circular
fraction:

252 MDL Handbook © 2021 NVIDIA Corporation

14.3 Concavities and overhangs 14 Geometric profiles

1.00.0

Fig. 14.17 – The transformation of surface normal vectors to displacement
vectors that form a bubble

The following section implements this idea of a bubble profile in the same spirit as the previous
materials in this chapter, reducing the problem to the construction of a displacement vector
based on the bubble’s radius and height parameters.

14.3.2 Bubble calculation

The radius and height parameters define the angles and lengths that are necessary to map a
value from 0.0 to 1.0 to a point along the bubble shape. Two geometric assumptions simplify
the problem: the length of the base line is 1.0, and the center of the circle is located above the
midpoint of the base, perpendicular to it. Figure 14.18 shows the definitions of base_angle

and half_angle based on these assumptions.

0.0 0.5 1.0

base_angle

half_angle

radius

h
e
i
g
h
t

Fig. 14.18 – Initial calculations: base_angle = 3π

2 , half_angle

= arccos
height
radius

From these two angles the starting and ending angles of the circular arc can be defined, as well
as the length of the portion of the base that cuts the circle (a chord) and the arc’s circumference.

© 2021 NVIDIA Corporation MDL Handbook 253

14 Geometric profiles 14.3 Concavities and overhangs

0.0 0.5 1.0

angle_start

angle_end

chord_length

base_length

bubble_start

base_length

bubble_end

bubble_circumference

Fig. 14.19 – Intermediate and final angles and lengths for mapping
calculations

For a given pair of radius and height arguments, the angles and lengths necessary to map
a value from 0.0 to 1.0 to a point on the bubble profile only need to be calculated once. To
clarify the difference between those constant arguments and the varying points mapped on
the profile, it is convenient to group the related calculations in a function. However, such a
function needs to return multiple values. A user-defined struct provides such a mechanism.
The custom struct bubble_args defines seven fields that are used in the bubble displacement
and the material:

Listing 14.16

struct bubble_args {

float radius;

float height;

float angle_start;

float angle_end;

float bubble_start;

float bubble_end;

float total_length;

};

The seven arguments are used to calculate the varying displacement of a surface. However, the
radius and height arguments of the bubble calculation are constant during the entire rendering
process. This implies that the five derived values will also be constant and only need to be
calculated once by a rendering system. Providing this information to a rendering system can
enable it to avoid redundant calculations. In MDL, this signal is performed by the keyword
uniform placed before the data type of a function or variable.

For example, the function get_bubble_args calculates the values for the seven fields of the
bubble_args struct. The uniform keyword defines a contract with the rendering system that the
input arguments and the value returned by the function will not change at any point during
the rendering process.

254 MDL Handbook © 2021 NVIDIA Corporation

14.3 Concavities and overhangs 14 Geometric profiles

Listing 14.17

uniform bubble_args get_bubble_args(Return uniform instance of the bubble_args struct

uniform float radius, uniform float height) Input parameters are uniform

{

float base_angle =

math::PI * 3 / 2;

float half_angle =

math::acos(height / radius);

float angle_start =

base_angle + half_angle;

float angle_end =

base_angle - half_angle + 2 * math::PI;

Angle calculations

float bubble_circumference =

(2 * math::PI - 2 * half_angle) * radius;

float chord_length =

2 * radius * math::sin(half_angle);

float total_length =

bubble_circumference + (1 - chord_length);

Length calculations

float circumference_fraction =

bubble_circumference / total_length;

float base_length =

(1.0 - chord_length) / 2;

float bubble_start =

base_length / total_length;

float bubble_end =

bubble_start + circumference_fraction;

Fractional length calculations

return bubble_args (

radius,

height,

angle_start,

angle_end,

bubble_start,

bubble_end,

total_length);

Construct and return the bubble_args struct

}

The following function, bubble_point, calculates the two-dimensional coordinates of the bub-
ble profile corresponding to the fraction arguments value in the range 0.0 to 1.0. The bubble_

args struct, declared as uniform, is passed as an argument to bubble_point.

Three components of the profile are calculated separately: the base to the left of the bubble, the
bubble’s arc, and the base to the right of the bubble. After the point is determined, a repetition
that is not equal to 1.0 scales the x and y components of the point. An offset value is added to
the x component after the scaling.

© 2021 NVIDIA Corporation MDL Handbook 255

14 Geometric profiles 14.3 Concavities and overhangs

Listing 14.18

float2 bubble_point(

float fraction, float repeat,

uniform bubble_args ba) Custom struct as a function argument

{

float y = 0, x = 0; Components of the float2 result

float f = math::frac(fraction * repeat);
Truncate fraction within the 0.0→ 1.0
range

if (f <= ba.bubble_start) {

x = f * ba.total_length;
Base at the le� side of the bubble

} else if (f <= ba.bubble_end) {

float pt_angle =

fit(f,

ba.bubble_start, ba.bubble_end,

ba.angle_end, ba.angle_start);

x = math::cos(pt_angle) * ba.radius + 0.5;

y = math::sin(pt_angle) * ba.radius + ba.height;

Bubble

} else {

x = 1.0 - (1.0 - f) * ba.total_length;

}

Base at the right side of the bubble

if (repeat != 1) {

float offset =

math::floor(fraction * repeat) / repeat;

x = x / repeat + offset;

y /= repeat;

}

Modify for the repetition of the
bubble

return float2(x, y);

}

The two-dimensional point returned by bubble_point determines a new point in the plane
defined by the surface normal and a tangent vector.

Listing 14.19

float3 modify_normal(

float f, float2 target, float3 tangent)

{

float3 result =

(tangent * (target[0] - f)) + The profile’s x components scale the tangent vector

(state::normal() * target[1]); The profile’s y components scale the surface
normal vector

return result;

}

256 MDL Handbook © 2021 NVIDIA Corporation

14.3 Concavities and overhangs 14 Geometric profiles

Putting the pieces together, function displace_with_bubble returns a vector based on the
tangent vector selected by a non-zero value of the repeat parameter.

Listing 14.20

float3 displace_with_bubble(

float2 repeat, uniform bubble_args ba)

{

float3 uvw = math::frac(state::texture_coordinate(0));

float3 result = float3(0.0); The default value is a null vector (no change)

if (repeat[0] > 0)

result = modify_normal(

uvw[0],

bubble_point(uvw[0], repeat[0], ba),

state::texture_tangent_u(0));

//6 Displace in the v direction

Displace in the u direction

else if (repeat[1] > 0)

result = modify_normal(

uvw[1],

bubble_point(uvw[1], repeat[1], ba),

state::texture_tangent_v(0));

return result;

}

The vector constructed by displace_with_bubble can now be used for displacement in the
material developed in the next section.

14.3.3 Bubble material

The original proportions of the texture will be distorted by the lengthening of the surface cre-
ated by its displacement. The separate calculation of the arguments for bubble displacement
provides a means to restore the correct proportions as the texture is applied to the surface.

The values of the bubble_args struct is defined as a variable in the material’s let clause. The
total_length field of the struct is used to compensate for the lengthening of the geometry
due to displacement. As in the previous materials, vector_displacement takes a displacement
vector and a surface color, defined by the grid function. The grid_point value, calculated in
the let clause, uses the modified length of the surface if normalize_grid is true.

Listing 14.21

material bubble(

uniform float radius = 0.25,

uniform float height = 0.25,

float2 repeat = float2(1.0),

float2 grid_count = float2(4.0),

bool normalize_grid = false) = Adjust u and v texture scaling to match

let {

© 2021 NVIDIA Corporation MDL Handbook 257

14 Geometric profiles 14.3 Concavities and overhangs

uniform bubble_args ba =

get_bubble_args(radius, height);
Parameters for both the surface and the
displacement

float2 grid_point(

grid_count[0] *

(normalize_grid && repeat[0] != 1.0

? ba.total_length

: 1),

Grid coordinate x

grid_count[1] *

(normalize_grid && repeat[1] != 1.0

? ba.total_length

: 1));

Grid coordinate y

} in vector_displacement(

displace_with_bubble(repeat, ba),

grid(grid_point));

In Figure 14.20, the bubble profile is rendered with a single repetition and without adjusting
the texture scaling. The texture is stretched in the u direction.

Fig. 14.20 – A single bubble profile without texture adjustment

bubble(

radius: 0.35,

height: 0.0,

repeat:

float2(1, 0))

Figure 14.21 shows the result of repeating the bubble profile.

Fig. 14.21 – Repeating the bubble profile

bubble(

radius: 0.4,

height: 0.2,

repeat:

float2(2, 0),

grid_count:

float2(4, 4))

258 MDL Handbook © 2021 NVIDIA Corporation

14.4 Displacement defined by segments 14 Geometric profiles

In Figure 14.22, the texture scaling is adjusted to restore the proportions in the u and v direc-
tions.

Fig. 14.22 – Restoring the proportions of the texture

bubble(

radius: 0.45,

height: 0.42,

repeat:

float2(3, 0),

grid_count:

float2(8, 8),

normalize_grid: true)

Figure 14.23 demonstrates the result of a height value less that 0.0, with proportional adjust-
ment of the texture.

Fig. 14.23 – A height value less that 0.0

bubble(

radius: 0.4,

height: -0.2,

repeat:

float2(4, 0),

grid_count:

float2(20, 20),

normalize_grid: true)

The calculation of the angle and length arguments of the bubble profile are consolidated in a
function that returns a custom struct. This modularization allows values to be shared between
the geometry and surface properties. The bubble arguments are used in the calculation of the
displacement vector, but the total length of the displaced surface also allows the texture to be
rescaled to its original proportions.

14.4 Displacement defined by segments

The previous section shows the utility of custom structs as a means for sharing values between
the surface and geometry properties of a material. This section develops the use of arrays for a
more general vector displacement method.

14.4.1 Defining line segments

Consider a shape made of a series of connected points. Pairs of points define a curve consisting
of a series of line segments. Such a curve has a piece-wise definition. Like the bubble profile of
the previous section, a series of line segments can define the vector displacement of a surface.

© 2021 NVIDIA Corporation MDL Handbook 259

14 Geometric profiles 14.4 Displacement defined by segments

Fig. 14.24 – A profile of nine line
segments

Unfolding the segments of Figure 14.24 into a straight line in Figure 14.25 produces a series of
points separated by the same proportional relationships as in the original curve.

Fig. 14.25 – Mapping profile vertices to proportional positions on a line

Inverting the mapping produces Figure 14.26, with evenly distributed points on a segment
associated with points evenly distributed along the profile.

Fig. 14.26 – Mapping evenly spaced positions along a line to
a profile

For a displacement mapping developed from line segments, an arbitrary relationship is de-
fined between the position of the profile and the surface of the polygon that it displaces. In
Figure 14.27 (page 261), the texture coordinate range of 0.0 to 1.0 is defined as the base of the
figure. Some points will therefore only move between two positions on the polygon itself.

260 MDL Handbook © 2021 NVIDIA Corporation

14.5 Implementing a segmented profile 14 Geometric profiles

0.0 1.0

Fig. 14.27 – Points in texture space mapped to displacement vectors that create the profile

Like the bubble profile, a displacement material based on a profile can be divided into the
functions that define the displacement vector and the use of those functions in the material_

geometry property of the material.

14.5 Implementing a segmented profile

This section develops a general implementation of a profile based on a series of line segments,
a segmented profile.

14.5.1 Segmented profile calculations

A segmented profile can be defined as const MDL array of float2 values.

Listing 14.22

const float2[10] tee(

float2(0.000, 0.000),

float2(0.375, 0.000),

float2(0.375, 0.250),

float2(0.125, 0.250),

float2(0.125, 0.500),

float2(0.875, 0.500),

float2(0.875, 0.250),

float2(0.625, 0.250),

float2(0.625, 0.000),

float2(1.000, 0.000));

To be able to determine the proportional distance along the segmented profile, the accumu-
lated absolute distance from the first point to each point must be calculated. In Listing 14.23
(page 262), function profile_lengths_10 takes an array of ten float2 values as an argument.
The size of the result array must also be explicitly defined, here an array of ten elements.
(As a tiny nod to efficiency, the distance from the first point to itself is set to zero before the
subsequent distance calculations begin.)

© 2021 NVIDIA Corporation MDL Handbook 261

14 Geometric profiles 14.5 Implementing a segmented profile

Listing 14.23

uniform float[10] profile_lengths_10(

uniform float2[10] pts)

{

float[10] result; Result array has the same size as the argument array

result[0] = 0.0;

for (int i = 1; i < 10; i++) {

result[i] =

result[i-1]

+ math::distance(pts[i-1], pts[i]);

Each element is the sum of the previous
segment lengths

}

return result;

}

However, MDL also allows the size of an array to be specified in its declaration by a variable
called a size identifier. The size identifier takes the place of the explicit array size defined by an
integer. It is identified by being surrounded by angle brackets, so that <N> declares N to be a
size identifier. Later evaluations of N will use the value specified in the defining expression.

An array declared with a size identifier is called a size-deferred array. When the execution time
of size definition should be emphasized, an array with an explicit size is called a size-immediate
array.

Listing 14.24

float[10] ten_values; Size-immediate array

float[<N>] values; Size-deferred array; size identifier N surrounded by angle brackets

float[N] sums; Array sums contains the same number of elements as the values array

Because the value of the size identifier is defined at the time the actual array size is known
when the function or material is called, functions and materials can be generalized with re-
gards to the size of the arrays that they accept as arguments.

Rewriting function profile_lengths_10 using size-deferred arrays, the variable N is initial-
ized in the argument list, and then used for the return type as well as in the body of the func-
tion.

Listing 14.25

uniform float[N] profile_lengths(

uniform float2[<N>] pts)
Variable N initialized in the argument declaration and
used for the return array

{

float[N] result; Use N to define result array

262 MDL Handbook © 2021 NVIDIA Corporation

14.5 Implementing a segmented profile 14 Geometric profiles

result[0] = 0.0;

for (int i = 1; i < N; i++) { Use N for loop termination

result[i] =

result[i-1]

+ math::distance(pts[i-1], pts[i]);

}

return result;

}

The function profile_lengths returns the length of the profile at each point. Function normalized_

lengths returns an array that scales the length values into the range of 0.0 to 1.0, also using
deferred-size arrays.

Listing 14.26

uniform float[N] normalized_lengths(

uniform float[<N>] lengths)
Input and output arrays have the same size

{

float total_length = lengths[N-1]; Last element of the input array is the total length

float[N] result;

result[0] = 0.0;

for (int i = 1; i < N; i++) {

result[i] = lengths[i] / total_length;

}

New value is a fraction of the length (0.0
→ 1.0)

return result;

}

Given a fractional value of 0.0 to 1.0, a point at that position on a segmented profile can be
found in two steps. First, the segment that contains the point is located. Second, the fractional
position within the segment is determined to find the point.

Listing 14.27

float2 point_along_profile(

float distance, Distance along the profile

float2[<N>] profile, Profile array of N float2 values

uniform float[N] t, Normalized profile length array of N float values

float repeat) Repetition of the profile curve

{

© 2021 NVIDIA Corporation MDL Handbook 263

14 Geometric profiles 14.5 Implementing a segmented profile

float dist =

math::frac(distance * repeat);
Total distance with the repetition taken into
account

int i = 1;

while (i < N) {

if ((t[i-1] <= dist) && (dist <= t[i]))

break;

i += 1;

}

Find segment that contains the point
that is "dist" units from the start of the
segment, using N for the loop
termination

float segment_fraction =

(dist - t[i-1]) / (t[i] - t[i-1]);
Fractional position of the point in the segment

float2 result = math::lerp(

profile[i-1], profile[i], segment_fraction);
Point on the segment at the
fractional position

if (repeat != 1.0) {

float offset =

math::floor(distance * repeat) / repeat;

result /= repeat;

result[0] += offset;

}

Scale profile point for the repeat
parameter if necessary

return result;

}

Like the bubble profile calculation, once the profile point is found, the modify_normal function
creates a vector in three dimensions, based on the surface normal and the selected tangent
vector.

Listing 14.28

float3 displace_with_profile(

uniform float2[<N>] profile, uniform float[N] t,

int uv_index, float repeat)

{

float f = math::frac(

state::texture_coordinate(0)[uv_index]);
Fractional value along the profile
from the texture coordinate

float3 tangent = uv_index == 0

? state::texture_tangent_u(0)

: state::texture_tangent_v(0);

Select the tangent vector to be scaled by the x
component of profile

float2 profile_point =

point_along_profile(f, profile, t, repeat);
Point on the profile for normal
vector modification

return modify_normal(f, profile_point, tangent);

}

264 MDL Handbook © 2021 NVIDIA Corporation

14.5 Implementing a segmented profile 14 Geometric profiles

14.5.2 Segmented profile material

The vector displacement of the segmented profile will, like the bubble profile, stretch the tex-
ture space. To compensate, one of the two scale factors for the grid material can be scaled to
match.

Listing 14.29

uniform float2 scale_component(

uniform float2 v, uniform float[<N>] scale, uniform int index)

{

float2 result = v;

result[index] *= scale[N-1]; Scaling compensation selected by the index

return result;

}

Calculating the segmented profile’s incremental length vector in a let statement allows the to-
tal length—the value of the last element of the array of segment lengths—to be used in scaling
the grid to maintain the proportions in u and v.

Listing 14.30

material tee_displacement(

uniform int uv_index = 0,

uniform float repeat = 1.0,

uniform float2 grid_count = float2(4.0))

= let {

uniform float[] lengths =

profile_lengths(profile_arrays::tee);
Incremental length of the profile

uniform float[] t =

normalized_lengths(lengths);
Profile lengths scaled from 0.0→ 1.0

uniform float2 scaled_grid_count =

scale_component(

grid_count, lengths, uv_index);

Total length used to adjust the grid scaling

} in

vector_displacement(

displace_with_profile(

profile_arrays::tee, t, uv_index, repeat),
Replacement of the normal
vector

grid(scaled_grid_count)); Grid scaled to compensate for texture stretching

Figure 14.28 (page 266) shows the result of the default parameter values for the tee_displacement

material.

© 2021 NVIDIA Corporation MDL Handbook 265

14 Geometric profiles 14.5 Implementing a segmented profile

Fig. 14.28 – The linear uv coordinate space maintained during the mapping of
a segmented profile

tee_displacement()

Figure 14.29 shows that increasing the grid_count still maintains the proportional relationship
of the texture coordinates.

Fig. 14.29 – Scaling the uv coordinate space for a profile object

tee_displacement(

grid_count:

float2(24, 24))

14.5.3 Profile repetition

A single segmented profile can be designed to repeat in a symmetrical manner. For example,
Figure 14.30 shows the symmetry of three tee profiles attached end to end.

Fig. 14.30 – Three repetitions of the tee profile

The repetition of a segmented profile across the surface only requires the scaling of the uv space
of the surface.

266 MDL Handbook © 2021 NVIDIA Corporation

14.5 Implementing a segmented profile 14 Geometric profiles

0.0 1.0

Fig. 14.31 – Repeating a profile in texture space

Unmentioned in the previous description of tee_displacement was its repeat parameter. This
scales the uv space to create a repetition of the displacement caused by the profile.

Fig. 14.32 – Repeating the profile three times in the u direction

tee_displacement(

repeat: 3)

The proportion of the texture is also maintained when both the texture and the profile are
repeated.

Fig. 14.33 – Repeating the profile and scaling the texture

tee_displacement(

repeat: 3,

grid_count:

float2(24, 24))

14.5.4 Profiles as rendering resources

The careful reader (or frustrated material user who finds that tee_displacement (page 265)
will not compile) will notice that the array that forms the tee shape was included in the ma-
terial as profile_arrays::tee. In other words, array tee must be defined in a module called
profile_arrays, produced from the file profile_arrays.mdl. For profile arrays, the use of
a separate module helps separate data (profile arrays) from the processes that use those data
(material calculations during rendering). This separation supports applications that provide a

© 2021 NVIDIA Corporation MDL Handbook 267

14 Geometric profiles 14.5 Implementing a segmented profile

choice of complex inputs to materials, as well as allowing the ready addition of new profiles
by users of the application.

The next chapter describes how this machinery of profiles as input data for materials can be
extended to a feature of traditional architectural design.

268 MDL Handbook © 2021 NVIDIA Corporation

15 Architectural details
The examples of geometric manipulation by MDL’s material_geometry property in the previ-
ous chapters blur the traditional line between rendering and modeling. Displacements during
rendering—and the resulting creation of additional triangles—are not based on the absolute
size of the geometric model, but on the number of rays that strike the object. This concern for
the appropriate amount of geometric detail with respect to screen space is called level of detail
(LOD) modeling.

This chapter shows how vector displacements in MDL can provide the efficiencies of level-
of-detail methods. A small, domain-specific language simplifies the definition of geometric
shapes, providing further efficiencies in the human, expressive realm.

15.1 A neoclassical handbook

Neoclassical building style in the eighteenth century copied and expanded upon the elaborate
architectural designs of classical Greece and Rome. Published in 1767, Palladio Londinensis11

by William Salmon explains the economic details of construction along with practical lessons
in geometry. Salmon also presents diagrams including numerical proportions for various ar-
chitectural elements. For example, Figure 15.1 shows the proportional measurements for the
imposts (arch supports) and arches of three classical orders:

Fig. 15.1 – Diagrams of imposts and the arches they support for the Tuscan, Doric, and Ionic orders in Palladio

Londinensis from Plate XIIII

11. http://www.mdz-nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb10048482-2

© 2021 NVIDIA Corporation MDL Handbook 269

http://www.mdz-nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb10048482-2

15 Architectural details 15.1 A neoclassical handbook

In Plate XXIX (Figure 15.2) Salmon provides the numerical proportions of two examples of
door and window ornaments that “may be made in divers Ways.”

Fig. 15.2 – Proportional measurements for window and door ornaments, Palladio Londinensis,
Plate XXIX

In the last chapter, “Geometric profiles” (page 241), vector displacement was defined by a
const array of type float2 (page 261). To describe the form of Salmon’s designs, circular arcs
as well as straight line segments will be needed. In this chapter, a description of a piece-wise
curve in a simple language is translated into an MDL array to model surface structures by
using vector displacements.12

12. Architectural historians will, it is hoped, forgive any technical naiveté displayed in their domain for the benefit
of better explaining MDL.

270 MDL Handbook © 2021 NVIDIA Corporation

15.2 A grammar for ornamental form 15 Architectural details

array function material

MDL

Londinensis

Palladio

curve
piece-wise

Fig. 15.3 – Encoding a geometric shape described in the Palladio Londinensis

and making it available to a material

15.2 A grammar for ornamental form

This section defines a method for representing a two-dimensional piece-wise curve. This method
will describe the profiles of three-dimensional shapes presented in Palladio Londinensis for use
as vector displacements in MDL.

For this simple implementation, the piece-wise curve will consist only of line segments and
circular arcs. A point on the curve is called a pw-point. A series of pw-points is called a pw-
curve. Each pw-point defines how it is connected to the previous pw-point in the pw-curve.

A pw-point specifies an x and a y coordinate value. By default, two successive pw-points are
connected by a line segment. An optional pw-point property defines other ways of connecting
two pw-points.

A pw-point is specified in a file on a single line and has one of three forms:

1. x y
2. x y property-name
3. x y property-name property-arguments

To connect two pw-points by a circular arc, one of the following properties are added to the
second point:

:angle degrees
This pw-point and the previous one in the pw-curve are connected by a circular arc of
angle degrees. The sign of degrees controls whether the arc is convex or concave in the
context of the pw-curve.

pw-pointpw-point angle

Fig. 15.4 – Two pw-points are connected by a circular arc

© 2021 NVIDIA Corporation MDL Handbook 271

15 Architectural details 15.2 A grammar for ornamental form

:sag distance
The sagitta is the perpendicular distance from the midpoint of a chord to the midpoint
of the chord’s circular arc. For the :sag property, the two pw-points are connected by a
circular arc such that the sagitta of the chord formed by the two pw-points is distance.

sagitta

Fig. 15.5 – The definition of the sagitta distance

:cyma_recta

:cyma_reversa

The cyma_reversa and :cyma_recta arguments connect two pw-points by two circular
arcs. In the Palladio Londinensis, drawing with a compass constructs the centers of the
two circles of the connected arcs (Figure 15.6)

Fig. 15.6 – The geometric description of the cyma reversa and cyma recta
in the Palladio Londinensis

The two pw-points are vertices in equilateral triangles formed from their midpoint and
the center of the circle on which the pw-point lies. At the midpoint, the slopes of the two
arcs are identical, forming a smooth curve at that point.

272 MDL Handbook © 2021 NVIDIA Corporation

15.3 Describing piece-wise curves 15 Architectural details

Fig. 15.7 – The cyma reversa and cyma recta are formed
by circles of the same size intersecting at a single point

:flare

A flare joins two points with an arc. The beginning part of the arc is tangent to the
previous segment. This constraint determines where on the circle the second point lies.

Fig. 15.8 – A flare connects a segment to an arc to which it is tangent

Line segments and these five types of curve description will form the basis for a simple textual
description of piece-wise curves.

15.3 Describing piece-wise curves

A pwc-list is a list of pw-points based on the descriptions of the last section. This section shows
the basic shapes that a pwc-list can describe. In the next section, these pwc-lists are converted
into MDL const arrays of a custom type designed for using pw-curves for vector displace-
ments.

Translating a pwc-list to an MDL array is done by a separate program that creates an efficient
representation of the pwc-list for use during rendering. A graphical application could be de-
signed in a similar manner, where an interactive drawing program provides the definition of a
piece-wise curve, which is translated by the application into an efficient MDL representation.13

13. The pwc-list translation program will be available in a future version of the MDL Handbook.

© 2021 NVIDIA Corporation MDL Handbook 273

15 Architectural details 15.3 Describing piece-wise curves

15.3.1 Segments

The first example of a pwc-list only defines segments. The x and y values can be specified as
fractions, which can be helpful in duplicating the measurements of Palladio Londinensis. In the
rendering of the pw-curve, the blue square is the original form of the geometric object that is
displaced by the pw-curve.

0 0

.7 0

.7 .4

3/7 .4

3/7 4/3

4/7 1

0
1

2

3

4

5

Fig. 15.9 – A series of segments

The :relative property specifies that the position of each pw-point is the relative x and y
translation from the previous point in the pw-curve. This will be very useful in representing
the shapes of Figure 15.6 (page 272), which are based on relative measurements throughout.

:relative

0 0

1 0

-.5 .5

.5 -.25

0 .5

-.5 .25

.5 .25

0 .5

-.5 -.25

.5 .5

a0 0

Fig. 15.10 – Relative offsets for points

274 MDL Handbook © 2021 NVIDIA Corporation

15.3 Describing piece-wise curves 15 Architectural details

15.3.2 Angle

The :angle property is a negative value for a clockwise arc between the pw-points. In this
diagram, the x and y offsets are equal, forming a rounded corner.

:relative

0 0

.25 0

0 .55

.125 .125 :angle -90

.375 0

.125 -.125 :angle -90

.125 0

0 1

.25 .25 :angle -90

0 .25

a0 0

Fig. 15.11 – Arcs defined by their angle measurement

15.3.3 Sagitta

An arc produced by the :sag property in pw-curve diagrams includes a line segment showing
the sagitta distance.

:relative

0 0

.5 0

0 .25

0 1 :sag .3

0 .25

-.5 0

Fig. 15.12 – Defining an arc by its sagitta

© 2021 NVIDIA Corporation MDL Handbook 275

15 Architectural details 15.3 Describing piece-wise curves

The sagitta distance can simplify the expression of an arc’s relationship to other portions of the
pw-curve. In Figure 15.12 (page 275), a distance of 0.3 extends the arc a slight amount past the
upper and lower segments.

:relative

0 0

.5 0

0 .25

-.25 0

0 1 :sag .3

.25 0

0 .25

-.5 0

Fig. 15.13 – Combing segments and curves

15.3.4 Cyma reversa and cyma recta

The :cyma_reversa and :cyma_recta properties have no additional arguments; the position
of the two pw-points uniquely describes the resulting curve. The prefix “a” in the last pw-point
specifies that the number should be treated as an absolute x or y value. This will also be useful
when defining the complex curves of Palladio Londinensis.

:relative

0 0

.25 0

0 1 :cyma_reversa

a0 0

Fig. 15.14 – Cyma reversa

276 MDL Handbook © 2021 NVIDIA Corporation

15.3 Describing piece-wise curves 15 Architectural details

To distinguish between the two types of cyma, note that the first arc of the cyma reversa—in
the order of the pw-points—is always concave whereas the first arc of the cyma recta is convex.

:relative

0 0

.25 0

0 1 :cyma_recta

a0 0

Fig. 15.15 – Cyma recta

15.3.5 Flare

Like the cyma reversa and recta, the :flare property has no arguments. The constraint that
the arc is tangent to the preceding segment at the first point defines the center of the circle.

:relative

0 0

.1 0

0 .55

.2 .3 :flare

0 .3

.3 .1 :flare

0 .2

a0 0

Fig. 15.16 – Flare

© 2021 NVIDIA Corporation MDL Handbook 277

15 Architectural details 15.4 Implementing curves from Palladio Londinensis

15.4 Implementing curves from Palladio Londinensis

With the types of curves developed in the last section, a pwc-list can define curves in the
Palladio Londinensis. For example, Figure 15.17 is an encoding of the first diagram in Plate XXIX.

:relative

0 0

1.5 0

0 3

.5 0

0 4

.5 0

1.5 2 :cyma_reversa

.5 0

0 1.5

a1.5 0

0 7.5 :sag 2.5

.5 0

2 2 :sag -.5

0 .5

1.5 2 :sag .25

.5 0

0 .5

3.5 0

.5 -.5 :angle -90

1 0

0 3

.5 .5 :angle -90

.5 0

0 .5

3 3 :cyma_recta

0 1

a0 0

Fig. 15.17 – The first ornament from Figure 15.3 (page 271), Plate XXIX in Palladio Londinensis

278 MDL Handbook © 2021 NVIDIA Corporation

15.4 Implementing curves from Palladio Londinensis 15 Architectural details

Figure 15.18 (page 279) encodes the second diagram from Plate XXIX.

:relative

0 0

1.5 0

0 2.75

1/3 0

0 3.75

a2.5 1 :sag .4

a2.75 0

a4 2-1/3 :cyma_reversa

a4.25 0

0 1.5

a1.5 0

0 8.5 :sag 2.75

.5 0

1.5 2 :cyma_reversa

.5 0

0 .5

2 2 :sag .5

.5 0

0 .5

4 0

.5 -.5 :angle -90

.5 0

0 4

.5 0

1 1.5 :cyma_reversa

.5 0

0 .5

3 3 :cyma_recta

0 1

a0 0

Fig. 15.18 – The second ornament in Plate XXIX

© 2021 NVIDIA Corporation MDL Handbook 279

15 Architectural details 15.4 Implementing curves from Palladio Londinensis

As another example of encoding a diagram in Palladio Londinensis, Figure 15.19 is an arch sup-
port, called an impost in Plate XIIII:

Fig. 15.19 – Diagram of Corinthian impost and arch in Palladio Londinensis, from Plate XIIII

In addition to the piece-wise elements used to encode the previous two diagrams, the Corinthian
impost also uses the :flare element.

:relative

0 0

15 0

0 7.5

1 1.5 :flare

0 1

1 0

0 2.5 :angle 180

a15 0

0 6

2 2.5 :flare

0 1

.25 0

0 2.25 :angle 180

-.25 0

7 8.5 :cyma_recta

0 1

3 3 :sag .7

2 0

0 6

1 0

4 4 :cyma_reversa

1 0

0 1

a0 0

Fig. 15.20 – Corinthian impost defined by a pwc-list

280 MDL Handbook © 2021 NVIDIA Corporation

15.5 Defining a piece-wise curve in MDL 15 Architectural details

When encoding diagrams in the Palladio Londinensis, some parts of the original drawing may
be implemented in more than one way—a flare could also be used to define a 90◦ angle. Ad-
ditional piece-wise curve types—for example, splines—would be required for encoding other
Palladio Londinensis diagrams.

15.5 Defining a piece-wise curve in MDL

How should a piece-wise curve be represented in MDL? The five curve types —angle, sagitta,
cyma recta, cyma reversa and flare—are simply convenient ways of describing arcs of a circle.
The piece-wise curve in MDL can be therefore be represented by a series of arcs or segments,
with the cyma recta and cyma reversa defined by two arcs. A separate translation program
converts the human-readable pwc-list into an MDL array. An array is an efficient representa-
tion for calculating the appropriate point along the curve for use in defining the displacement
vector.

The six types of pw-points are identified by a custom enum name pw_type:

Listing 15.1

enum pw_type {

segment,

angle,

sagitta,

cyma_recta,

cyma_reversa,

flare

Types of pw-points in the pwc-list

};

The pw_type enum is the first field of the MDL definition of a pw-point, the custom struct
pw_point:

Listing 15.2

struct pw_point {

pw_type type; Type from pw_type enum

float t = 0.0; Parameterized distance along the pw-curve (0.0→ 1.0)

float2 pt = float2(0.0); Position of point

float2 center = float2(0.0);

float radius = 0.0;

float start_angle = 0.0;

float end_angle = 0.0;

Circular arc parameters

};

© 2021 NVIDIA Corporation MDL Handbook 281

15 Architectural details 15.5 Defining a piece-wise curve in MDL

The pwc-list translation program uses the pw_point struct and the pw_type enum to define a
const array of elements of type pw_curve::pw_point, that is, the struct pw_point defined in
the pw_curve module.

The field t is the parametric position of the pw-point along the pw-curve, with a value from
0.0 to 1.0. The mapping from texture space to a point on the pw-curve will use this value to
determine the piece in which the desired point will be found.

The translation from the pwc-list also calculates the length of the pw-curve. This value can
be passed as an argument to the material_surface calculation to maintain the same texture
scaling in u and v.

As a convenience in debugging, the pwc-list element is added as a comment to each pw-point.

Listing 15.3 – Constructed MDL array for Figure 1.7 (page 274)

const float segments_length = 2.00056; Length of pw-curve for texture scaling

const pw_curve::pw_point[6] segments (

pw_curve::pw_point(// 0 0

pw_curve::segment, 0.0, float2(0.0, 0.0)),

Constructor for a pw_curve::pw_point
includes the pwc-list element as a
comment

pw_curve::pw_point(// .7 0

pw_curve::segment, 0.26243, float2(0.525, 0.0)),

pw_curve::pw_point(// .7 .4

pw_curve::segment, 0.41238, float2(0.525, 0.3)),

pw_curve::pw_point(// 3/7 .4

pw_curve::segment, 0.51414, float2(0.32142857, 0.3)),

pw_curve::pw_point(// 3/7 4/3

pw_curve::segment, 0.86404, float2(0.32142857, 1.0)),

pw_curve::pw_point(// 4/7 1

pw_curve::segment, 1.0, float2(0.42857143, 0.75)));

Properties of the entire pwc-list, like :relative, are placed as a comment to the declara-
tion of the array. For the definition of the four circular arc types, additional fields to the pw_

curve::pw_point struct define the circle’s center, its radius, and the beginning and ending
angle measurements.

Listing 15.4 – Constructed MDL array for Figure 1.9 (page 275)

const float right_angle_arc_length = 2.23678;

const pw_curve::pw_point[11] right_angle_arc (// :relative Property of the pwc-list

pw_curve::pw_point(// 0 0

pw_curve::segment, 0.0, float2(0.0, 0.0)),

pw_curve::pw_point(// .25 0

pw_curve::segment, 0.05452, float2(0.12195122, 0.0)),

pw_curve::pw_point(// 0 .55

pw_curve::segment, 0.17447, float2(0.12195122, 0.26829268)),

282 MDL Handbook © 2021 NVIDIA Corporation

15.5 Defining a piece-wise curve in MDL 15 Architectural details

pw_curve::pw_point(// .125 .125 :angle -90

pw_curve::angle, 0.21729, float2(0.18292683, 0.32926829),

float2(0.18292683, 0.26829268), 0.06098, 3.14159, 1.5708),

Constructor for a pw_
curve::pw_point
that creates a 90◦ arc

pw_curve::pw_point(// .375 0

pw_curve::segment, 0.29907, float2(0.36585366, 0.32926829)),

pw_curve::pw_point(// .125 -.125 :angle -90

pw_curve::angle, 0.34189, float2(0.42682927, 0.26829268),

float2(0.36585366, 0.26829268), 0.06098, 1.5708, 0.0),

pw_curve::pw_point(// .125 0

pw_curve::segment, 0.36915, float2(0.48780488, 0.26829268)),

pw_curve::pw_point(// 0 1

pw_curve::segment, 0.58723, float2(0.48780488, 0.75609756)),

pw_curve::pw_point(// .25 .25 :angle -90

pw_curve::angle, 0.67287, float2(0.6097561, 0.87804878),

float2(0.6097561, 0.75609756), 0.12195, 3.14159, 1.5708),

pw_curve::pw_point(// 0 .25

pw_curve::segment, 0.7274, float2(0.6097561, 1.0)),

pw_curve::pw_point(// a0 0

pw_curve::segment, 1.0, float2(0.0, 1.0)));

The function point_along_pwc searches for the piece that contains the curve_position. If
curve_position is less than the parametric value t of a point, then the desired point is in that
piece.

Listing 15.5

float2 point_along_pwc(

float curve_position, Position on the piece-wise curve: 0.0→ 1.0

pw_curve::pw_point[<N>] pwc) Size-deferred array of N pw_curve:pw_point instances

{

float2 result = pwc[N-1].pt;
All but the last pw-point will be examined, so the last
point is the default

for (int i = 1; i < N; i++) {
Start at 1 so that pwc[i-1] and pwc[i] define the current
piece

pw_curve::pw_point current = pwc[i]; Current point in the pwc-list

if (curve_position < current.t) {
If the position on the curve is less than the
pw-point’s parameter value, the desired point
is in this piece

pw_curve::pw_point last = pwc[i-1];
The previous point that will define the
piece along with the current point

debug::assert(

(current.t - last.t) != 0, "duplicated t value");

float piece_position =

(curve_position - last.t) / (current.t - last.t);

Calculate
position in the
current piece,
but check that
the denominator
is not zero.

© 2021 NVIDIA Corporation MDL Handbook 283

15 Architectural details 15.5 Defining a piece-wise curve in MDL

if (current.type == pw_curve::segment) {

result = math::lerp(

last.pt, current.pt, piece_position);

If the piece is a line segment,
use linear interpolation

} else {

float angle =

math::lerp(

current.start_angle, current.end_angle,

piece_position);

result = current.center + current.radius *

float2(math::cos(angle), math::sin(angle));

If the piece is an arc,
use linear interpolation
for the angle, then
calculate the point

}

break; The piece containing the point has been found; exit from the loop

}

}

return result;

}

Once the point on the pw-curve has been found, the function displace_to_point uses the
surface normal and the specified tangent vector in texture space to construct the displacement
vector.

Listing 15.6

float3 displace_to_point(

float2 pw_point, float uv_position, float3 tangent)

{

float3 result = The x component scales the surface normal vector

pw_point.x * state::normal();

result +=

(pw_point.y - uv_position) * tangent;

The offset of the y component from the
current uv position scales the tangent
vector

return result;

}

Until function displace_to_point, it has not been necessary to specify which tangent will be
used to construct the displacement vector. A natural choice in modeling the vertical structures
of Palladio Londinensis would be to use the tangent vector in the v direction, given the canonical
texture space of a square polygon. However, a pw-curve can just as easily be used to displace
a surface in the u direction. To parameterize this choice, the displacement_direction enum

provides a clearer argument value than, say, a Boolean variable in which v displacements are
expressed as “not in the u direction.”

Listing 15.7

enum displacement_direction {

along_u,

along_v

};

284 MDL Handbook © 2021 NVIDIA Corporation

15.6 Using piece-wise curves in materials 15 Architectural details

Function displace_with_pwc determines a uv value from the pw-curve. This value, together
with the corresponding tangent vector, is used to calculate the resulting displacement vector.

Listing 15.8

float3 displace_with_pwc(

uniform pw_curve::pw_point[<N>] pwc,

displacement_direction displace_dir)

{

int uv_index = displace_dir == along_u ? 0 : 1; Index for the u or v coordinate

float uv_pos = state::texture_coordinate(0)[uv_index];
Position in uv texture
space

float3 tangent =

displace_dir == along_u

? state::texture_tangent_u(0)

: state::texture_tangent_v(0);

Select the tangent vector to be scaled by the x
component of the piece-wise curve

float2 pw_point =

point_along_pwc(uv_pos, pwc);
Point on the piece-wise curve for normal vector
modification

return

displace_to_point(pw_point, uv_pos, tangent);
Return the modified normal
based on the curve point

}

The function displace_with_pwc provides the transformation from the MDL array (created
from the pwc-list) to the displacement vector for use in the materials developed in the next
section.

15.6 Using piece-wise curves in materials

Section 1.4 (page 277) created piece-wise curves based on measurements from the Palladio
Londinensis. After translating the pwc-list into an MDL array, Section 1.5 (page 281) defined
a series of functions to derive vector displacements from those arrays. This section uses those
arrays to create vector displacements in a material.

Material grid_ornament_1 use the material vector_displacement, developed in “A template
material for vector displacement” (page 243). The first parameter is the point’s displacement
vector, defined by function displace_with_pwc:

Listing 15.9

material grid_ornament_1(

float grid_count=50) =

let {

float normalized_grid_count =

grid_count *

ornament_1::ornament_1_length;

Use the calculated length of the ornament_1 curve
to normalize the texture space

} in

geometry::vector_displacement(

© 2021 NVIDIA Corporation MDL Handbook 285

15 Architectural details 15.6 Using piece-wise curves in materials

displace_with_pwc(

ornament_1::ornament_1, along_v),
Create displacement vector from array
ornament_1

geometry::grid(

float2(grid_count, normalized_grid_count)));

The length of the pw-curve scales the texture in v using the length calculated during the con-
struction of the MDL array of pw-points.

Fig. 15.21 – The first ornament rendered with the material pwc_grid

Figure 15.21 demonstrates that the texture scaling remains consistent in the u and v directions,
enabling other texture-based materials to be used for the surface property. The material_

surface property of Listing 15.10 is almost the simplest material that uses a texture for the
diffuse reflection value; only the texture scaling has been parameterized.

Listing 15.10

material travertine(

float texture_u_scale = 1.0,

float texture_v_scale = 1.0) =

material (

surface: material_surface (

286 MDL Handbook © 2021 NVIDIA Corporation

15.7 Radial displacment 15 Architectural details

scattering: df::diffuse_reflection_bsdf (

tint: tex::lookup_color(

texture_2d("travertine.png"),

float2(texture_u_scale,

texture_v_scale)))));

Texture map used for diffuse color

Material stone_ornament_2 uses the material travertine in combination with the array for
the second ornament in Plate XXIX of Palladio Londinensis.

Listing 15.11

material stone_ornament_2() =

geometry::vector_displacement(

displace_with_pwc(

ornament_2::ornament_2, along_v),

travertine(1.0, ornament_2::ornament_2_length));

Fig. 15.22 – The second ornament rendered with a stone texture map in material travertine

15.7 Radial displacment

In the previous sections, pwc-lists described a three-dimensional shape from a two-dimensional
curve translated in single direction. For more complex shapes—column capitals, for example—
the pwc-list can be rotated around a central axis.

© 2021 NVIDIA Corporation MDL Handbook 287

15 Architectural details 15.7 Radial displacment

Function y_rotation_3 creates a 3x3 matrix that defines rotation around the y axis.

Listing 15.12

float3x3 y_rotation_3(float angle) {

return float3x3(

math::cos(angle), 0.0, math::sin(angle),

0.0, 1.0, 0.0,

-math::sin(angle), 0.0, math::cos(angle));

}

Function displace_to_angular_point maps the parameter t, which will be a uv coordinate
value 0.0 → 1.0, to 0◦ → 360◦.

Listing 15.13

float3 displace_to_angular_point(

float2 pw_point, float t, float radius = 0)

{

float angle = t * math::PI * 2; Map 0.0→ 1.0 to 0◦ → 360◦

float3 p = float3(

pw_point[0] + radius,

pw_point[1],

0.0);

Construct a three-dimensional point from the pw-point

p *= y_rotation_3(angle); Multiple the point by the rotation matrix

p -= state::position(); Compensate for the point’s original position

return p;

}

Both u and v coordinates are used in pwc_angular_displace: one determines the amount of
rotation, the other determines the point on the piece-wise curve to be rotated.

Listing 15.14

float3 pwc_angular_displace(

uniform pw_curve::pw_point[<N>] pwc,

displacement_direction displace_dir)

{

int position_index =

displace_dir == along_u ? 0 : 1;
uv coordinate index for position along pwc

int rotation_index =

displace_dir == along_u ? 1 : 0;
uv coordinate index for amount of rotation

float position =

state::texture_coordinate(0)[position_index];
Position in uv texture space

288 MDL Handbook © 2021 NVIDIA Corporation

15.7 Radial displacment 15 Architectural details

float rotation =

state::texture_coordinate(0)[rotation_index];
Rotation factor (0→ 1)

float2 pw_point =

point_along_pwc(position, pwc);
Point on the piece-wise curve for normal vector
modification

float3 result =

displace_to_angular_point(

pw_point, rotation);

Result is rotation of pwc point based on the value of the
other uv coordinate

return result;

}

Material radial_pwc parameterizes the surface material to be used with the displaced object
geometry.

Listing 15.15

material radial_pwc(

uniform pw_curve::pw_point[<N>] pwc,

material surface_material,

displacement_direction displace_dir=along_v) =

geometry::vector_displacement(

pwc_angular_displace(pwc, displace_dir),

surface_material);

Material corinthian_capital_grid uses the piece-wise curve constructed for the Corinthian
impost, with a grid size of 50 in both u and v directions.

Listing 15.16

material corinthian_capital_grid()

= radial_pwc(

corinthian::corinthian,

geometry::grid(float2(50.0)));

Figure 15.23 (page 290) uses material corinthian_capital_grid. Like the previous render-
ings, the initial geometry is a simple square, the radial form constructed solely by the displace-
ment vectors calculated from the piece-wise curve.

© 2021 NVIDIA Corporation MDL Handbook 289

15 Architectural details 15.8 Three-dimensional texture mapping

Fig. 15.23 – Using function pwc_angular_displace to construct a solid of revolution

15.8 Three-dimensional texture mapping

Figure 15.23 does not compensate for the different scaling in the u and v directions; unlike
the ornaments, there is no obvious way to extend a two-dimensional texture map to such a
geometric transformation. However, three-dimensional texture mapping can create a consistent
surface appearance as surface points map to a pattern defined in three dimensions.

For example, material marbloid uses the Perlin noise function from the “Noise” (page 179)
chapter to create a mapping from a surface point’s three-dimensional position to a value in
three-dimensional noise space.

Listing 15.17

material marbloid (

float scale = 1.0,

int level_count = 5,

functions::mapping_mode space = functions::object) =

let {

double3 scaled_point =

scale * functions::position(space);

double noise_value =

perlin_noise::summed_perlin_noise(

scaled_point, level_count,

level_scale: 0.8, turbulence: true);

Create a noise value based on position of
current point

double z = 2 * scaled_point.z;

double veins = 0.03 +

0.3 * (1 + math::sin(z + 8.0 * noise_value));

Repeat the noise pattern for
vein-like structure

290 MDL Handbook © 2021 NVIDIA Corporation

15.8 Three-dimensional texture mapping 15 Architectural details

color tint(

float(math::pow(veins, 1/1.8)),

float(math::pow(veins, 1/1.4)),

float(math::pow(veins, 1/1.1) * 0.9));

Modify the noise value differently for the
RGB values to create a non-grayscale
value

} in

material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf(

tint: tint)));

The marbloid material provides the surface property for the generic radial_pwc material.

Listing 15.18

material corinthian_capital_stone()

= radial_pwc(

corinthian::corinthian,

marbloid(scale: 12));

Figure 15.24 uses material corinthian_capital_stone. The structure of the pattern, though
based on the random results of the noise function, feels consistent throughout, a result of the
mapping from the noise function to spatial position rather than to the distorted uv texture
space of the surface.

Fig. 15.24 – Using three-dimensional texture mapping material marbloid

© 2021 NVIDIA Corporation MDL Handbook 291

15 Architectural details 15.9 Displacement with two piece-wise curves

15.9 Displacement with two piece-wise curves

Rather than rotating a piece-wise curve around an axis, a second piece-wise curve can define
the form that the first curve should follow.

Listing 15.19

float3 displace_to_pwc_point(

float2 pw_point, float t,

uniform pw_curve::pw_point[<N>] pwc,

float radius_offset = 0.0)

{

float angle = t * math::PI * 2;

float3 p = float3(pw_point[0] + radius_offset,

pw_point[1],

0.0);

float2 square_pt = point_along_pwc(t, pwc);

float scale = math::length(square_pt);

p.x *= scale;

p *= y_rotation_3(angle);

p -= state::position();

return p;

}

Material double_pwc uses two piece-wise curves, the arguments pwc_profile and pwc_sweep.

Listing 15.20

material double_pwc(

uniform pw_curve::pw_point[<N>] pwc_profile,

uniform pw_curve::pw_point[<M>] pwc_sweep,

material surface_material,

float radius_offset = 0.0) =

let {

float u = state::texture_coordinate(0)[0];

float v = state::texture_coordinate(0)[1];

float2 profile_point = point_along_pwc(

v, pwc_profile);

float3 displace_point = displace_to_pwc_point(

profile_point, u, pwc_sweep, radius_offset);

} in

geometry::vector_displacement(

displace_point,

surface_material);

The Palladio Londinensis includes diagrams for the construction of column fluting, vertical groves
that provide more visual detail to columns.

292 MDL Handbook © 2021 NVIDIA Corporation

15.9 Displacement with two piece-wise curves 15 Architectural details

Fig. 15.25 – Construction methods for column fluting from Palladio Londinensis

The traditional Doric fluting geometry can be defined as a piece-wise curve of twenty arcs. By
constructing a square using the distance between flute edges as one side, the flute arc can be
constructed from the circle with a center in the center of the constructed square.

Fig. 15.26 – Traditional number and proportions of Doric column flutes implemented with the :sag property

© 2021 NVIDIA Corporation MDL Handbook 293

15 Architectural details 15.9 Displacement with two piece-wise curves

The material doric_matte_stone uses the MDL array constructed from the Doric piece-wise
curve to define the positioning of the Corinthian capital of the previous section.

Listing 15.21

material doric_matte_stone()

= double_pwc(

corinthian::corinthian,

pwc_examples::doric_flutes,

diffuse_reflection::diffuse_reflection(

tint: pink_stone),

radius_offset: 0.25);

The color of the diffuse_reflection is defined by a const color variable, pink_stone:

const color pink_stone = color(.7, .66, .63);

Figure 15.27 uses material doric_matte_stone.

Figure 15.27

In contrast to doric fluting, traditional iconic fluting consists of twenty-four semicircular arcs,
separated by a distance that is one-third the width of the flutes.

294 MDL Handbook © 2021 NVIDIA Corporation

15.9 Displacement with two piece-wise curves 15 Architectural details

Fig. 15.28 – Ionic column flutes are separated by a straight line, one-third the width of the flute

Material ionic_matte_stone is the same in structure to doric_matte_stone, but uses the array
defined by the piece-wise curve for the ionic fluting shape.

Listing 15.22

material ionic_matte_stone()

= double_pwc(

corinthian::corinthian,

pwc_examples::ionic_flutes,

diffuse_reflection::diffuse_reflection(

tint: pink_stone),

radius_offset: 0.25);

Figure 15.29 uses material ionic_matte_stone.

Figure 15.29

© 2021 NVIDIA Corporation MDL Handbook 295

15 Architectural details 15.10 The procedural impulse

15.10 The procedural impulse

Providing a cross-platform description of surface appearance is an important design goal of
MDL. The pwc-list extends the idea of portability to the data used as rendering parameters. A
program written in a scripting language converted the pwc-lists—created in a text editor—to
MDL arrays. Before rendering, the script calculates all the necessary data for point coordinates,
angle descriptions and the parametric value for each pw-point. A generic data description
like the pwc-list could also be created within a graphical application, providing an interactive
display of the curve as it is developed, saved by the application in a generic format for use in
the various rendering systems supported by the application.

interface
user

graphical

description
data

generic

rendering system B
format conversion for

rendering system A
format conversion for

rendering system . . .
format conversion for

system B
rendering

system A
rendering

system . . .
rendering

Fig. 15.30 – A generic data representation can be optimized for different rendering systems

But reusable templates in a generic format are hardly a digital invention. In Figure 15.31
(page 297), a portrait of an architect from the sixteenth century, the setting is surprisingly
sparse. The architect’s gaze directs us to the only tools of the trade that are visible, hanging
on nails: a straightedge and two molding templates.

296 MDL Handbook © 2021 NVIDIA Corporation

15.10 The procedural impulse 15 Architectural details

Fig. 15.31 – Bildnis eines Architekten (Picture of an Architect), attributed to Ludger tom Ring der Älter,
1496–1547. Gemäldegalerie, Berlin

© 2021 NVIDIA Corporation MDL Handbook 297

15 Architectural details 15.10 The procedural impulse

Fig. 15.32 – Molding templates in Bildnis eines Architekten

298 MDL Handbook © 2021 NVIDIA Corporation

Part 6 Reference

© 2021 NVIDIA Corporation MDL Handbook 299

300 MDL Handbook © 2021 NVIDIA Corporation

16 Terminology and syntax

16.1 Inputs

16.1.1 Parameters and arguments

Example parameters

color tint = color(1.0),

float roughness = 0.0

Corresponding arguments

tint: color(0.7),

roughness: 0.1

A parameter is a name that defines an input of a specified type to a struct or function. An
argument is a datum of the type required by the parameter used in the struct or function. The
ordered set of parameters of a struct or function is called its signature.

16.2 Instantiable types

A data type is described by a constructor function, or simply, a constructor. Calling the constructor
function of a data type creates an instance of the data type. This process is also called instancing
the data type.

16.2.1 Distribution function

Type declaration

bsdf diffuse_reflection_bsdf (

color tint = color(1.0),

float roughness = 0.0

);

An instance of the type

df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1)

A distribution function describes the interaction of light with objects. MDL provides three dis-
tribution function types: the bidirectional scattering distribution function (or BSDF), the emission
distribution function (or EDF) and the volume distribution function (or VDF).

Surface: BSDF Light: EDF Volume: VDF
diffuse_reflection_bsdf diffuse_edf anisotropic_vdf

diffuse_transmission_bsdf spot_edf

specular_bsdf measured_edf

simple_glossy_bsdf

backscattering_glossy_reflection_bsdf

measured_bsdf

© 2021 NVIDIA Corporation MDL Handbook 301

16 Terminology and syntax 16.3 Modifying and combining distribution functions

16.2.2 Material property struct

Type declaration

struct material_surface {

bsdf scattering = bsdf();

material_emission emission = material_emission();

};

An instance of the type

material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1))

Each fundamental appearance property of MDL is defined by a material property struct type. These
types contain distribution function instances.

Material property structs
material_surface

material_emission

material_volume

material_geometry

16.2.3 Material struct

Type declaration

struct material {

uniform bool thin_walled = false;

material_surface surface = material_surface();

material_surface backface = material_surface();

uniform color ior = color(1.0);

material_volume volume = material_volume();

material_geometry geometry = material_geometry();

};

An instance of the type

material (

surface: material_surface (

scattering:

df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1)))

The material struct is the fundamental data type of MDL. A material struct instance provides a
complete specification for a rendering system to calculate surface appearance. A material struct
instance contains instances of the surface, volume and geometry properties; the emission prop-
erty is a field of the surface property. A material struct instance also defines the interpretation
of the surface as a boundary or volume enclosure (the thin_walled field) and the index of re-
fraction of the object (the ior field).

16.3 Modifying and combining distribution functions

16.3.1 Distribution function modifiers

Type declaration

bsdf tint (

color tint,

bsdf base);

An instance of the type

tint (

tint: color(0.5),

base: df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1));

A BSDF modifier creates a new BSDF instance from an existing BSDF instance and other param-
eters.

302 MDL Handbook © 2021 NVIDIA Corporation

16.3 Modifying and combining distribution functions 16 Terminology and syntax

BSDF modifiers
tint

thin_film

directional_factor

measured_curve_factor

16.3.2 Mixing distribution functions

Type declaration

bsdf normalized_mix (

bsdf_component[<N>] components);

An instance of the type

df::normalized_mix (

components: df::bsdf_component[] (

bsdf_component (

weight: 0.5,

base: df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1)),

bsdf_component (

weight: 0.5,

base: df::specular_bsdf (

tint: color(0.8,0.8,0.2))));

A distribution function mixer combines two or more mixing components to produce a new distri-
bution function instance. Total values larger than one are adjusted either by component normal-
ization or component clamping.

Mixing functions
bsdf normalized_mix

edf normalized_mix

vdf normalized_mix

bsdf clamped_mix

edf clamped_mix

vdf clamped_mix

16.3.3 Components for mixing distribution functions

Type declaration

struct bsdf_component (

float weight = 0.0,

bsdf component = bsdf())

An instance of the type

bsdf_component (

weight: 0.5,

base: df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1));

Each component specfifies a mixing weight used in calculating the result of the distribution
function mixer.

Component types
bsdf_component

edf_component

vdf_component

© 2021 NVIDIA Corporation MDL Handbook 303

16 Terminology and syntax 16.4 Material definitions

16.3.4 Layering distribution functions

Type declaration

bsdf weighted_layer (

float weight = 1.0,

bsdf layer = bsdf(),

bsdf base = bsdf(),

float3 normal = state::normal());

An instance of the type

weighted_layer (

weight: 0.1,

layer: df::specular_bsdf (

tint: color(0.8,0.8,0.2)),

base: df::diffuse_reflection_bsdf (

tint: color(0.7),

roughness: 0.1))

A layering function combines two distribution function instances based on a weight to produce
a new distribution function instance. The weighting value may be directionally dependent.

Layering functions
weighted_layer

fresnel_layer

custom_curve_layer

measured_curve_layer

16.4 Material definitions

16.4.1 Creating a material definition with parameters

Syntax

material name (parameters) =

material-struct-instance

Material creation

material diffuse (

color tint = color(1.0)) =

material (

surface: material_surface (

scattering: df::diffuse_reflection_bsdf (

tint: tint,

roughness: 1.0)));

A material definition encapsulates a material instance, defining a name and providing material
parameters in a form that that resembles a function definition. The values provided to param-
eters in the encapsulated material instance are called interior arguments. If no parameters are
defined, then the material definition is fully encapsulated. If some, but not all, of the values of
the interior arguments are supplied by material definition’s parameters, the material definition
is said to be partially encapsulated. If the value of all interior arguments are provided by the pa-
rameters of the material definition, the material definition is said to be fully parameterized. The
example above, the material definition named diffuse is partially encapsulated: the material
definition’s tint parameter is used as an argument to the encapsulated material instance; the
roughness parameter of the material instance is the constant value 1.0.

16.4.2 Reuse of an existing material definition

Syntax

material name (parameters) =

material-definition-instance

Material creation

material blue_plaster() =

diffuse (

tint: color(0.4,0.5,0.9),

roughness: 0.8);

304 MDL Handbook © 2021 NVIDIA Corporation

16.5 Material programming techniques 16 Terminology and syntax

A material definition can provide the behavior for a new material definition through material
definition reuse. The new definition can define a new signature for the reused material definition
through reparameterization. In the example above, the new definition has been fully encapsu-
lated; no parameters in the enclosed definition are available in the new signature.

16.4.3 Material definition reuse with duplicated parameters

Syntax

material name (*) =

material-definition-instance

Material creation

material plaster(*) =

diffuse (

tint: color(0.7,0.7,0.7),

roughness: 1.0);

By definining the reuse of a material definition with a starred signature, all the parameters of
the enclosed material are available in the outer signature.

16.5 Material programming techniques

16.5.1 Material components as arguments

Syntax

material name (parameters-including-material) =

material-definition-instance-using-material ;

Material creation

material add_clear_coat (

material base,

color ior = color(1.5)) =

material (

volume: base.volume,

geometry: base.geometry,

surface: material_surface (

emission: base.surface.emission,

scattering: fresnel_layer (

layer: specular_bsdf(),

base: base.surface.scattering,

ior: ior)));

A material definition can include one or more material definition parameters in its signature. The
components of the material definition can be selected for use as interior arguments with dot
notation.

© 2021 NVIDIA Corporation MDL Handbook 305

16 Terminology and syntax 16.5 Material programming techniques

16.5.2 Let-expressions

Syntax

material name (parameters) =

let {

variable-declarations
} in

material-instance ;

Material creation

material add_clear_coat (

material base,

color ior = color(1.5))

=

let {

bsdf coat = specular_bsdf();

bsdf coated_scattering = fresnel_layer (

layer: coat,

base: base.surface.scattering,

ior: ior);

material_surface coated_surface = material_surface (

emission: base.surface.emission,

scattering: coated_scattering);

} in

material (

volume: base.volume,

geometry: base.geometry,

surface: coated_surface);

A let-expression defines a set of local variables that can be used as argument values for the mate-
rial instance.

16.5.3 Conditional material expressions

Syntax

material name (parameters) =

boolean-condition
? material-1
: material-2 ;

Material creation

material level_of_detail (

uniform bool high_resolution,

material high_res_material,

material low_res_material) =

high_resolution ? high_res_material : low_res_material;

A conditional expression selects between two values based on the Boolean value of the conditional
predicate.

306 MDL Handbook © 2021 NVIDIA Corporation

Epilog

The establishment of the fine arts and their division into various categories go back to a time
that differed radically from ours and to people whose power over things and circumstances
was minute in comparison to our own. However, the astounding growth that our resources
have undergone in terms of their precision and adaptability will in the near future confront us
with very radical changes indeed in the ancient industry of the beautiful. In all arts there is a
physical component that cannot continue to be considered and treated in the same way as
before; no longer can it escape the effects of modern knowledge and modern practice. Neither
matter nor space nor time is what, up until twenty years ago, it always was. We must be
prepared for such profound changes to alter the entire technological aspect of the arts,
influencing invention itself as a result, and eventually, it may be, contriving to alter the very
concept of art in the most magical fashion.

Paul Valéry, Pièces sur l’art, 1934. Quoted in Walter Benjamin, The Work of Art in the Age of Mechanical Reproduction,

1936, translated by J. A. Underwood.

Most people, if they pause to think about it, would probably accept that the business of
material production has loomed so large in human history, absorbed such boundless
resources of time and energy, provoked such internecine conflicts, engrossed so many human
beings from cradle to grave and confronted so many of them as a matter of life or death, that
it would be amazing if it were not to leave its mark on a good many other aspects of our
existence. Other social institutions find themselves inexorably dragged into its orbit. It bends
politics, law, culture and ideas out of true by demanding that rather than just flourish as
themselves, they spend much of their time legitimating the prevailing social order. Think of
contemporary capitalism, in which the commodity form has left is grubby thumbprints on
everything from sport to sexuality, from how best to swing oneself a front-row seat in heaven
to the ear-shattering tones in which U.S. television reporters hope to seize the viewer’s
attention for the sake of the advertisers. The most compelling confirmation of Marx’s theory
of history is late capitalist society. There is a sense in which his case is becoming truer as time
passes. It is capitalism, not Marxism, which is economically reductionist. It is capitalism
which believes in production for production’s sake, in the narrower sense of the word
“production.”

Terry Eagleton, Why Marx Was Right, 2011.

All my life I have returned to this same question time and again: What is the need—that is,
what is the truly objective constellation of forces working in us and the world—that justifies
the creation of something like art? This question has certainly had a central place in my life,
and has led me to distance myself from my initial involvement in the scientific field. Before I
made this shift, provoked by this question, this search for answers, I began my studies in the
natural sciences, and experienced certain things about the prevailing scientific paradigm,
which made me realize that an answer would not be found here. In questioning the value of
this kind of research, or alternatively, as a means of exploring the overall field of existing
forces—including life forces, the forces of the mind, that is of the soul, psyche-spirit and their
higher forms—I was compelled to consider, on purely experimental grounds, whether I
should explore the sphere of art, that has manifested through time as a form of cultural
activity.

Joseph Beuys, What is Art?, English translation, 2004; originally published in German as Was ist Kunst?
Werkstattgespräch mit Beuys, 1986.

in memory, Lance Williams

424. Das Bild ist da; und ich
bestreite seine Richtigkeit nicht.
Aber was ist seine Anwendung?
Denke an das Bild der Blindheit
als einer Dunkelheit in der Seele

oder im Kopf des Blinden.

424. The picture is there; and I
do not dispute its correctness. But
what is its application? Think of

the picture of blindness as a
darkness in the mind or in the

head of a blind person.

Philosophische Untersuchungen, Ludwig Wittgenstein

	 Preface
	 Part 1 Language structure
	The design rationale for MDL
	Background: Describing appearance
	The graphics pipeline

	Basic principles of MDL
	Idea #1: Light is only reflected, transmitted and emitted.
	Idea #2: Angles matter.
	The orientation of the surface

	Appearance in the world
	The spirit of MDL

	The structure of a material
	Background: Form and meaning in language
	Types of data
	The value of a type

	The syntax of the material type
	The struct type
	Default values for fields in a struct
	Compound structs
	Accessing struct components with the dot operator

	Design of the MDL material
	The definition of the material struct
	Combinations of field values
	Creating a material

	 Part 2 Light interaction
	Light at a surface
	The simplest material
	A material for diffuse reflection
	The material's role in the rendering system
	Diffuse transmission
	Light emission
	Emissive objects
	Design considerations

	Specular interaction at a surface
	Specular reflection
	Specular transmission
	Specular reflection and transmission

	Glossy interaction
	Glossy reflection
	Glossy transmission
	Glossy reflection and transmission

	Lighting techniques
	Geometric constructions
	A global lighting environment

	Glass
	Geometric structure and the appearance of glass
	Glossy reflection and transmission
	Variable transmission at edges
	The appearance of color through absorption
	Subsurface scattering as a model of glass

	Light in a volume
	Background: Categories of interaction in a volume
	Modeling a volume

	The volume distribution function
	Scattering and absorption
	Scattering direction
	An experimental basis for volume modeling
	The volume's enclosing object
	Scattering
	Absorption

	Volume enclosures as scene elements
	Objects within a volume
	Light color
	Colored scattering
	Colored absorption
	The spread of light emission
	The removal of obstacles

	 Part 3 Material combinations
	Combining distribution functions
	Layering functions
	Weighted layering
	Simplifying a material's structure with temporary variables
	Reusing parts of existing materials
	Parameterizing a layered material

	Layering based on the viewing angle
	Background: The refractive index
	Fresnel layering in a material

	Mixing functions
	The syntax of mixing functions
	Mixing glossy reflections
	An approximation of metal

	Multiple layers
	A linear series of layered materials
	Using combined materials as layers

	Plastic
	Background: The Phong model
	The Phong model and MDL
	A Phong-like plastic model
	Layering a Phong-like plastic model
	Modeling the dielectric properties of plastic
	Modeling plastic with two glossy lobes
	Adding translucency to plastic

	Fabric
	A strategy for an MDL material
	Simplifying assumptions
	An isotropic cylinder appears to be anisotropic
	Multiple warp threads can create multiple highlights on the weft

	The structural design of the fabric material
	The directional sheen of the warp
	Creating multiple highlights
	Combining the warp and the weft
	A translucency component for thinner fabric
	Combining iridescence and translucency

	 Part 4 Defining functions
	Function calls as arguments
	The syntax of imperative MDL
	Data types and variables
	Control flow
	Standard functions and MDL modules
	User-defined functions

	Displaying spatial parameters as colors
	Mapping from spatial parameters to an image
	Coordinate spaces
	State functions and conditional expressions
	Stripes
	Checkerboards

	Noise
	Utility functions
	The noise function
	Combining calls of the noise function

	 Part 5 Modifying geometry
	Geometry in a material
	Background: Rendering as modeling
	Historical development of the two techniques

	The material_geometry struct

	Displacement mapping: moving a surface point
	Defining displacement distance with a function
	Level-of-detail considerations
	Separating displacement from the control of light interaction
	A parameterized displacement material
	Defining displacement distance with an image

	Bump mapping: perturbing a surface normal
	Background: Working with a local coordinate system
	Tiling the texture space
	Defining a circle within a tile
	Modifying the normal vector within the circle
	Deriving normals from a height map image
	A two-dimensional simplification of surface orientation
	The normal vector of a line segment
	Constructing the normal vector
	Implementing the construction method

	Using normal vectors encoded in an image
	The format of a normal map
	Visualizing the vectors of the normal map
	Using the normal map
	Modifying normal map components

	Geometric profiles
	A framework for vector displacement
	Utility functions and their names
	A material for drawing grids
	A template material for vector displacement

	Maintaining a linear texture space
	Concavities and overhangs
	The bubble profile
	Bubble calculation
	Bubble material

	Displacement defined by segments
	Defining line segments

	Implementing a segmented profile
	Segmented profile calculations
	Segmented profile material
	Profile repetition
	Profiles as rendering resources

	Architectural details
	A neoclassical handbook
	A grammar for ornamental form
	Describing piece-wise curves
	Segments
	Angle
	Sagitta
	Cyma reversa and cyma recta
	Flare

	Implementing curves from Palladio Londinensis
	Defining a piece-wise curve in MDL
	Using piece-wise curves in materials
	Radial displacment
	Three-dimensional texture mapping
	Displacement with two piece-wise curves
	The procedural impulse

	 Part 6 Reference
	Terminology and syntax
	Inputs
	Parameters and arguments

	Instantiable types
	Distribution function
	Material property struct
	Material struct

	Modifying and combining distribution functions
	Distribution function modifiers
	Mixing distribution functions
	Components for mixing distribution functions
	Layering distribution functions

	Material definitions
	Creating a material definition with parameters
	Reuse of an existing material definition
	Material definition reuse with duplicated parameters

	Material programming techniques
	Material components as arguments
	Let-expressions
	Conditional material expressions

	 Epilog

